Recent Advances in TiO2-Functionalized Textile Surfaces
Mohammad Mamunur Rashid, Barbara Simoncic*, Brigita Tomsic*
Faculty of Natural Sciences and Engineering,
University of Ljubljana, Askerceva 12, 1000 Ljubljana, Slovenia
* E-mail addresses of corresponding authors
[email protected] (B. Simoncic), [email protected] (B. Tomsic)
Abstract:
TiO2 has already established itself as one of the most attractive nanomaterials for the functionalisation of textiles due to its unique structural, physicochemical, optical and electrical properties, nontoxicity and low cost. This review paper provides a comprehensive overview of recent advances in the chemical and physical modification of textile fibres with TiO2 nanoparticles and nano-/microstructures and summarises the most important findings on the application processes and performance of TiO2-modified textile substrates. Photocatalytic self-cleaning, antimicrobial activity, UV protection, hydrophobicity, thermal stability, flame retardancy and electrical con- ductivity are highlighted as central discussion topics in the review. Insights into the mechanisms for providing functional properties are presented; the influence of various factors on functionality is shown; and the latest strategies for TiO2 surface modification to enhance visible light photocatalytic activity, including multiphase heterojunctions, ion doping, metal doping/loading, coupling with other semiconductors and surface sensitiza- tion, are discussed. This paper presents some new ideas for producing TiO2-functionalized textile surfaces and suggests future research perspectives and directions in this research area.
Keywords: TiO2 Titanium dioxide Photocatalytic activity Textile Functionalization Surface modification
References:
[1] A.P.S. Sawhney, B. Condon, K.V. Singh, S.S. Pang, G. Li, D. Hui, Modern applications of nanotechnology in textiles, Text. Res. J. 78 (2008) 731–739, https://doi.org/10.1177/0040517508091066. [2] P.J. Rivero, A. Urrutia, J. Goicoechea, F.J. Arregui, Nanomaterials for functional textiles and fibers, Nanoscale Res. Lett. 10 (2015) 1–22, https://doi.org/10.1186/s11671-015-1195-6. [3] N.D. Yilmaz, Smart textiles: Wearable Nanotechnology, John Wiley & Sons, 2018. [4] A.A. Basheer, Advances in the smart materials applications in the aerospace industries, Aircr. Eng. Aerosp. Technol. 92 (2020) 1027–1035, https://doi.org/10.1108/AEAT-02-2020-0040. [5] G. Chen, Y. Li, M. Bick, J. Chen, Smart textiles for electricity generation, Chem. Rev. 120 (2020) 3668–3720, https://doi.org/10.1021/acs.chemrev.9b00821. [6] W.A. Abbas, I.H. Abdullah, B.A. Ali, N. Ahmed, A.M. Mohamed, M.Y. Rezk, N. Ismail, M.A. Mohamed, N.K. Allam, Recent advances in the use of TiO2 nanotube powder in biological, environmental, and energy applications, Nanoscale Adv. 1 (2019) 2801–2816, https://doi.org/10.1039/c9na00339h. [7] F.O. Ochedi, D. Liu, J. Yu, A. Hussain, Y. Liu, Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: a review, Environ. Chem. Lett. (2020), https://doi.org/10.1007/s10311-020-01131-5. [8] P. Klara, F.M. dela Rosa, M. Kovaci´c, H. Kusi´c, U.L. Stangar, F. Fresno, D. D. Dionysiou, A.L. Bozic, Recent achievements in development of TiO2-based composite photocatalytic materials for solar driven water purification and water splitting, Materials (Basel) 13 (2020), https://doi.org/10.3390/ma13061338. [9] O.V. Salata, Applications of nanoparticles in biology and medicine, J. Nanobiotechnol. 2 (2004) 1–6. [10] S. Tasleem, M. Tahir, Recent progress in structural development and band engineering of perovskites materials for photocatalytic solar hydrogen production: a review, Int. J. Hydrogen Energy 45 (2020) 19078–19111, https://doi.org/10.1016/j.ijhydene.2020.05.090. [11] Y. Yao, X. Gao, Z. Li, X. Meng, Photocatalytic reforming for hydrogen evolution: a review, Catalysts (2020) 10, https://doi.org/10.3390/catal10030335. [12] A.A. Basheer, Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century, Chirality 30 (2018) 402–406, https://doi.org/10.1002/chir.22808. [13] A.A. Basheer, I. Ali, Stereoselective uptake and degradation of (±)-o,p-DDD pesticide stereomers in water-sediment system, Chirality 30 (2018) 1088–1095, https://doi.org/10.1002/chir.22989. [14] A.A. Basheer, New generation nano-adsorbents for the removal of emerging contaminants in water, J. Mol. Liq. 261 (2018) 583–593, https://doi.org/10.1016/j.molliq.2018. 04.021. [15] I. Ali, C.K. Jain, Groundwater contamination and health hazards by some of the most commonly used pesticides, Curr. Sci. 75 (1998) 1011–1014. [16] I. Ali, V.K. Gupta, H.Y. Aboul-Enein, Metal ion speciation and capillary electrophoresis: application in the new millenium, Electrophoresis 26 (2005) 3988–4002, https://doi.org/10.1002/elps.200500216. [17] K. Ahmad, H.R. Ghatak, S.M. Ahuja, A review on photocatalytic remediation of environmental pollutants and H2 production through water splitting: a sustainable approach, Environ. Technol. Innov. 19 (2020), 100893, https://doi.org/10.1016/j.eti.2020.100893. [18] I. Ali, O.M.L. Alharbi, Z.A. ALOthman, A.M. Al-Mohaimeed, A. Alwarthan, Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water, Environ. Res. 170 (2019) 389–397, https://doi.org/10.1016/j. envres.2018.12.066. [19] P. Agarwal, R. Gupta, N. Agarwal, Advances in synthesis and applications of microalgal nanoparticles for wastewater treatment, J. Nanotechnol. (2019) 2019, https://doi.org/10.1155/2019/7392713. [20] T. Esakkimuthu, D. Sivakumar, S. Akila, Application of nanoparticles in wastewater treatment, Pollut. Res. 33 (2014) 567–571, https://doi.org/10.5958/2319-1198.2014.01088.4. [21] M.S. Diallo, N. Savage, Nanoparticles and water quality, J. Nanoparticle Res. 7 (2005) 325–330, https://doi.org/10.1007/s11051-005-8543-x. [22] I.S. Yunus, A.Kurniawan Harwin, D. Adityawarman, A. Indarto, Nanotechnologies in water and air pollution treatment, Environ. Technol. Rev. 1 (2012) 136–148, https://doi.org/10.1080/21622515.2012.733966. [23] J.A. Torres, A.E. Nogueira, G.T.S.T. Da Silva, O.F. Lopes, Y. Wang, T. He, C. Ribeiro, Enhancing TiO2 activity for CO2 photoreduction through MgO decoration, J. CO2 Util. 35 (2020) 106–114, https://doi.org/10.1016/j.jcou.2019.09.008. [24] A. Verbic, M. Gorjanc, B. Simoncic, Zinc oxide for functional textile coatings: recent advances, Coatings 9 (2019) 550, https://doi.org/10.3390/coatings9090550. [25] X. Hou, K. Aitola, P.D. Lund, TiO2 nanotubes for dye-sensitized solar cells—a review, Energy Sci. Eng. (2020) 1–17, https://doi.org/10.1002/ese3.831. [26] I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities, Arab. J. Chem. 12 (2019) 908–931, https://doi.org/10.1016/j. arabjc.2017.05.011. [27] T. Kim, J. Lim, S. Song, Recent progress and challenges of electron transport layers in organic-inorganic perovskite solar cells, Energies 13 (2020) 1–16, https://doi.org/10.3390/en13215572. [28] Z. Liang, C.F. Yan, S. Rtimi, J. Bandara, Piezoelectric materials for catalytic/ photocatalytic removal of pollutants: recent advances and outlook, Appl. Catal. B Environ. 241 (2019) 256–269, https://doi.org/10.1016/j.apcatb. 2018.09.028. [29] S. Lin, H. Huang, T. Ma, Y. Zhang, Photocatalytic oxygen evolution from water splitting, Adv. Sci. 2002458 (2020) 23–25, https://doi.org/10.1002/advs.202002458. [30] G. Lusvardi, C. Barani, F. Giubertoni, G. Paganelli, Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants, Materials (Basel) 10 (2017) 1–11, https://doi.org/10.3390/ma10101208. [31] C.R. Nun˜o, R.J. M., Ball, Bowen, Photocatalytic properties of commercially available TiO2 powders for pollution control, IntechOpen (2016), https://doi.org/10.1016/j.colsurfa. 2011.12.014. [32] Y. Nam, J.H. Lim, K.C. Ko, J.Y. Lee, Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect, J. Mater. Chem. A 7 (2019) 13833–13859, https://doi.org/10.1039/c9ta03385h. [33] G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q.M. Lu, H.M. Cheng, Titanium dioxide crystals with tailored facets, Chem. Rev. 114 (2014) 9559–9612, https://doi.org/10.1021/cr400621z. [34] I. Ali, M. Suhail, Z.A. Alothman, A. Alwarthan, Recent advances in syntheses, properties and applications of TiO2 nanostructures, RSC Adv. 8 (2018) 30125–30147, https://doi.org/10.1039/c8ra06517a. [35] M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.Q. Zhang, S.S. Al-Deyab, Y. Lai, A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications, J. Mater. Chem. A 4 (2016) 6772–6801, https://doi.org/10.1039/c5ta09323f. [36] M.T. Noman, M.A. Ashraf, A. Ali, Synthesis and applications of nano-TiO2 : a review, Environ. Sci. Pollut. Res. 26 (2019) 3262–3291, https://doi.org/10.1007/s11356-018-3884-z. [37] S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters, J. Photochem. Photobiol. C Photochem. Rev. 31 (2017) 1–35, https://doi.org/10.1016/j.jphotochemrev. 2017.01.005. [38] N. Fajrina, M. Tahir, A critical review in strategies to improve photocatalytic water splitting towards hydrogen production, Int. J. Hydrogen Energy 44 (2019) 540–577, https://doi.org/10.1016/j.ijhydene.2018.10.200. [39] I. Ali, O.M.L. Alharbi, Z.A. Alothman, A.Y. Badjah, Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using Co/TiO2 nanoparticles, Photochem. Photobiol. 94 (2018) 935–941, https://doi.org/10.1111/php.12937. [40] A.A. Basheer, I. Ali, Water photo splitting for green hydrogen energy by green nanoparticles, Int. J. Hydrogen Energy 44 (2019) 11564–11573, https://doi.org/10.1016/j.ijhydene.2019.03.040. [41] U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48 (2003) 53–229, https://doi.org/10.1016/s0167-5729(02)00100-0. [42] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33–177, https://doi.org/10.1016/j.progsolidstchem. 2004.08.001. [43] N. Rahimi, R.A. Pax, E.M.A. Gray, Review of functional titanium oxides. I: TiO2 and its modifications, Prog. Solid State Chem. 44 (2016) 86–105, https://doi.org/10.1016/j.progsolidstchem.2016.07.002. [44] A. Jain, D. Vaya, Photocatalytic activity of TiO2 nanomaterial, J. Chil. Chem. Soc. 4 (2017) 3683–3690. [45] L. Guo, C. Zhong, L. Shi, L. Ju, X. Wang, D. Yang, K. Bi, Y. Hao, Y. Yang, Phase and defect engineering of MoS2 stabilized in periodic TiO2 nanoporous film for enhanced solar water splitting, Adv. Opt. Mater. 7 (2019) 1–8, https://doi.org/10.1002/adom.201801403. [46] M. Montazer, E. Pakdel, Functionality of nano titanium dioxide on textiles with future aspects: focus on wool, J. Photochem. Photobiol. C Photochem. Rev. 12 (2011) 293–303, https://doi.org/10.1016/j.jphotochem rev.2011.08.005. [47] M. Radeti´c, Functionalization of textile materials with TiO2 nanoparticles, J. Photochem. Photobiol. C Photochem. Rev. 16 (2013) 62–76, https://doi.org/10.1016/j.jphotochem rev.2013.04.002. [48] S.G. Kumar, K.S.R.K. Rao, Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO), Appl. Surf. Sci. 391 (2017) 124–148, https://doi.org/10.1016/j.apsusc.2016.07.081. [49] J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater. 29 (2017) 1–20, https://doi.org/10.1002/
adma.201601694. [50] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci. 391 (2017) 72–123, https://doi.org/10.1016/j.apsusc.2016.07.030. [51] M.Diantoro Nasikhudin, A. Kusumaatmaja, K. Triyana, Study on photocatalytic properties of TiO2 nanoparticle in various pH condition, J. Phys. Conf. Ser. (2018) 1011, https://doi.org/10.1088/1742-6596/1011/1/012069. [52] Y. Xu, Q. Liu, C. Liu, Y. Zhai, M. Xie, L. Huang, H. Xu, H. Li, J. Jing, Visible-light- driven Ag/AgBr/ZnFe2O4 composites with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation, J. Colloid Interface Sci. 512 (2018) 555–566, https://doi.org/10.1016/j.jcis.2017.10.077. [53] M. Zhang, L. Jaroniec, Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications, Appl. Surf. Sci. 430 (2018) 2–17. [54] R. Shen, C. Jiang, Q. Xiang, J. Xie, X. Li, Surface and interface engineering of hierarchical photocatalysts, Appl. Surf. Sci. 471 (2019) 43–87, https://doi.org/10.1016/j.apsusc.2018.11.205. [55] Q. Wang, H. Ren, Y. Zhao, X. Xia, F. Huang, G. Cui, B. Dong, B. Tang, Facile and mild preparation of brookite-rutile heterophase-junction TiO2 with high photocatalytic activity based on a deep eutectic solvent (DES), J. Mater. Chem. A 7 (2019) 14613–14619, https://doi.org/10.1039/c9ta02500f. [56] Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: principles, synthesis, and applications, Mater. Today 21 (2018) 1042–1063, https://doi.org/10.1016/j.mattod.2018.04.008. [57] A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: Recent advances and applications, Catalysts 3 (2013) 189–218, https://doi.org/10.3390/catal3010189. [58] C. Di Valentin, G. Pacchioni, Trends in non-metal doping of anatase TiO2: B, C, N and F, Catal. Today 206 (2013) 12–18, https://doi.org/10.1016/j.cattod.2011.11.030. [59] V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, J. Photochem. Photobiol. C Photochem. Rev. 25 (2015) 1–29, https://doi.org/10.1016/j.jphotochemrev.2015.08.003. [60] S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters, J. Photochem. Photobiol. C Photochem. Rev. 31 (2017) 1–35, https://doi.org/10.1016/j.jphotochemrev. 2017.01.005. [61] J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys. 16 (2014) 20382–20386, https://doi.org/10.1039/c4cp02201g. [62] J. Jiang, G. Oberdo¨rster, A. Elder, R. Gelein, P. Mercer, P. Biswas, Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2 (2008) 33–42, https://doi.org/10.1080/17435390701882478. [63] A.R. Sanwaria, R. Gopal, J. Jain, M. Nagar, A. Chaudhary, Highly pure brookite phase of TiO2 from salicylaldehyde modified titanium(IV) isopropoxide: Synthesis, characterization and photocatalytic applications, J. Inorg. Organomet. Polym. Mater. 30 (2020) 1393–1403, https://doi.org/10.1007/s10904-019-01314-w. [64] M. Monai, T. Montini, P. Fornasiero, Brookite: Nothing new under the sun? Catalysts 7 (2017) https://doi.org/10.3390/catal7100304. [65] Y. Wang, Y. Li, Template-free preparation and photocatalytic and photoluminescent properties of brookite TiO2 hollow spheres, J. Nanomater. 2019 (2019), https://doi.org/10.1155/2019/3605976. [66] S. Pigeot-R´emy, D. Gregori, R. Hazime, A. H´erissan, C. Guillard, C. Ferronato, S. Cassaignon, C. Colbeau-Justin, O. Durupthy, Size and shape effect on the photocatalytic efficiency of TiO2 brookite, J. Mater. Sci. 54 (2019) 1213–1225, https://doi.org/10.1007/s10853-018-2924-x. [67] Z. Zhang, C.C. Wang, R. Zakaria, J.Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B 102 (1998) 10871–10878, https://doi.org/10.1021/jp982948. [68] C. Retamoso, N. Escalona, M. Gonza´lez, L. Barrientos, P. Allende-Gonza´lez, S. Stancovich, R. Serpell, J.L.G. Fierro, M. Lopez, Effect of particle size on the photocatalytic activity of modified rutile sand (TiO2) for the discoloration of methylene blue in water, J. Photochem. Photobiol. A Chem. 378 (2019) 136–141, https://doi.org/10.1016/j.jphotochem. 2019.04.021. [69] W. Yu, L. Zhao, F. Chen, H. Zhang, L.H. Guo, Surface bridge hydroxyl-mediated promotion of reactive oxygen species in different particle size TiO2 suspensions, J. Phys. Chem. Lett. 10 (2019) 3024–3028, https://doi.org/10.1021/acs.jpclett.9b00863. [70] A.V. Vorontsov, E.N. Kabachkov, I.L. Balikhin, E.N. Kurkin, V.N. Troitskii, P. G. Smirniotis, Correlation of surface area with photocatalytic activity of TiO2, J. Adv. Oxid. Technol. 21 (2018), https://doi.org/10.26802/jaots.2017. 0063. [71] K. Santhi, M. Navaneethan, S. Harish, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of TiO2 nanorods by hydrothermal method with different pH conditions and their photocatalytic activity, Appl. Surf. Sci. 500 (2020), 144058, https://doi.org/10.1016/j.apsusc.2019.144058. [72] W. Buraso, V. Lachom, P. Siriya, P. Laokul, Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance, Mater. Res. Express. 5 (2018) 0–10., https://doi.org/10.1088/2053-1591/aadbf0. [73] U.G. Akpan, B.H. Hameed, The advancements in sol-gel method of doped-TiO2 photocatalysts, Appl. Catal. A Gen. 375 (2010) 1–11, https://doi.org/10.1016/j.apcata.2009. 12.023. [74] H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J. Photochem. Photobiol. C Photochem. Rev. 15 (2013) 1–20, https://doi.org/10.1016/j.jphotochemrev.2012.10.001. [75] V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Nanostructured Ti1-xSxO2-yNy heterojunctions for efficient visible- light-induced photocatalysis, Inorg. Chem. 51 (2012) 7164–7173, https://doi.org/10.1021/ic3001653. [76] X. Xing, H. Zhu, M. Zhang, L. Xiao, Q. Li, J. Yang, Effect of heterojunctions and phase-junctions on visible-light photocatalytic hydrogen evolution in BCN-TiO2 photocatalysts, Chem. Phys. Lett. 727 (2019) 11–18, https://doi.org/10.1016/j.cplett.2019.04.044. [77] L.A. Al-Hajji, A.A. Ismail, A. Al-Hazza, S.A. Ahmed, M. Alsaidi, F. Almutawa, A. Bumajdad, Impact of calcination of hydrothermally synthesized TiO2 nanowires on their photocatalytic efficiency, J. Mol. Struct. 1200 (2020), https://doi.org/10.1016/j.molstruc.2019.127153. [78] D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR, J. Phys. Chem. B 107 (2003) 4545–4549, https://doi.org/10.1021/jp0273934. [79] X. Xu, Y. Guo, Z. Liang, H. Cui, J. Tian, Remarkable charge separation and photocatalytic efficiency enhancement through TiO2(B)/anatase hetrophase junctions of TiO2 nanobelts, Int. J. Hydrogen Energy 44 (2019) 27311–27318, https://doi.org/10.1016/j.ijhydene.2019.08.174. [80] Q. Tay, X. Wang, X. Zhao, J. Hong, Q. Zhang, R. Xu, Z. Chen, Enhanced visible light hydrogen production via a multiple heterojunction structure with defect- engineered g-C3N4 and two-phase anatase/brookite TiO2, J. Catal. 342 (2016) 55–62, https://doi.org/10.1016/j.jcat.2016.07.007. [81] Z. Wang, Y. Wang, W. Zhang, Z. Wang, Y. Ma, X. Zhou, Fabrication of TiO2(B)/ anatase heterophase junctions at high temperature via stabilizing the surface of TiO2(B) for enhanced photocatalytic activity, J. Phys. Chem. C 123 (2019) 1779–1789, https://doi.org/10.1021/acs.jpcc.8b09763. [82] S.A. Ansari, M.M. Khan, M.O. Ansari, M.H. Cho, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, New J. Chem. 40 (2016) 3000–3009, https://doi.org/10.1039/c5nj03478g. [83] W. Zhang, L. Zou, L. Wang, Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: a review, Appl. Catal. A Gen. 371 (2009) 1–9, https://doi.org/10.1016/j.apcata.2009.09.038. [84] Y. Ma, J. Zhang, B. Tian, F. Chen, L. Wang, Synthesis and characterization of thermally stable Sm,N co-doped TiO2 with highly visible light activity, J. Hazard. Mater. 182 (2010) 386–393, https://doi.org/10.1016/j.jhazmat.2010. 06.045. [85] J.J. Carey, K.P. McKenna, Screening doping strategies to mitigate electron trapping at anatase TiO2 surfaces, J. Phys. Chem. C 123 (2019) 22358–22367, https://doi.org/10.1021/acs.jpcc.9b05840. [86] J. Zuo, J. Zhu, M. Zhang, Q. Hong, J. Han, J. Liu, Synergistic photoelectrochemical performance of La-doped RuO2-TiO2/Ti electrodes, Appl. Surf. Sci. (2020) 502, https://doi.org/10.1016/j.apsusc.2019.144288. [87] C.O. Amor, Kais elghniji, C. Virlan, A. Pui, E. Elaloui, Effect of dysprosium ion (Dy3+) doping on morphological, crystal growth and optical properties of TiO2 particles and thin films, Phys. B Condens. Matter. 560 (2019) 67–74, https://doi.org/10.1016/j.physb. 2019.02.017. [88] X. Wang, M. Sun, M. Murugananthan, Y. Zhang, L. Zhang, Electrochemically self- doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds, Appl. Catal. B Environ. 260 (2020), 118205, https://doi.org/10.1016/j.apcatb.2019.118205. [89] J. Liang, J. Wang, K. Yu, K. Song, X. Wang, W. Liu, J. Hou, C. Liang, Enhanced photocatalytic performance of Nd3+-doped TiO2 nanosphere under visible light, Chem. Phys. 528 (2020), 110538, https://doi.org/10.1016/j.chemphys.2019.110538. [90] P. Pradubkorn, S. Maensiri, E. Swatsitang, P. Laokul, Preparation and characterization of hollow TiO2 nanospheres: The effect of Fe3+ doping on their microstructure and electronic structure, Curr. Appl. Phys. 20 (2020) 178–185, https://doi.org/10.1016/j.cap.2019.11.002. [91] A.El Mragui, O. Zegaoui, I. Daou, Synthesis, characterization and photocatalytic properties under visible light of doped and co-doped TiO2-based nanoparticles, Mater. Today Proc. 13 (2019) 857–865, https://doi.org/10.1016/j.matpr.2019.04.049. [92] S. Ahadi, N.S. Moalej, S. Sheibani, Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol-gel and mechanical alloying, Solid State Sci. 96 (2019), 105975, https://doi.org/10.1016/j.solidstatesciences.2019.105975. [93] J.A.B. P´erez, M. Courel, R.C. Valderrama, I. Herna´ndez, M. Pal, F.P. Delgado, N. R. Mathews, Structural, optical, and photoluminescence properties of erbium doped TiO2 films, Vacuum 169 (2019), 108873, https://doi.org/10.1016/j.vacuum.2019.108873. [94] G. Zeng, Q. Zhang, Y. Liu, S. Zhang, J. Guo, Preparation of TiO2 and Fe-TiO2 with an impinging stream-rotating packed bed by the precipitation method for the photodegradation of gaseous toluene, Nanomaterials 9 (2019), https://doi.org/10.3390/nano9081173. [95] M. Karbassi, P. Zarrintaj, A. Ghafarinazari, M.R. Saeb, M.R. Mohammadi, A. Yazdanpanah, J. Rajadas, M. Mozafari, Microemulsion-based synthesis of a visible-light-responsive Si-doped TiO2 photocatalyst and its photodegradation efficiency potential, Mater. Chem. Phys. 220 (2018) 374–382, https://doi.org/10.1016/j.matchemphys.2018.08.078. [96] Y. Yu, J. Xia, C. Chen, H. Chen, J. Geng, H. Li, One-step synthesis of a visible-light driven C@N–TiO2 porous nanocomposite: enhanced absorption, photocatalytic and photoelectrochemical performance, J. Phys. Chem. Solids. 136 (2020), 109169, https://doi.org/10.1016/j.jpcs.2019.109169. [97] S. Varnagiris, A. Medvids, M. Lelis, D. Milcius, A. Antuzevics, Black carbon-doped TiO2 films: synthesis, characterization and photocatalysis, J. Photochem. Photobiol. A Chem. 382 (2019), 111941, https://doi.org/10.1016/j.jphotochem.2019.111941. [98] N.S. Kovalevskiy, S.A. Selishcheva, M.I. Solovyeva, D.S. Selishchev, In situ IR spectroscopy data and effect of the operational parameters on the photocatalytic activity of N-doped TiO2, Data Br. 24 (2019), 103917, https://doi.org/10.1016/j.dib.2019.103917. [99] Z. Sun, V.F. Pichugin, K.E. Evdokimov, M.E. Konishchev, M.S. Syrtanov, V. N. Kudiiarov, K. Li, S.I. Tverdokhlebov, Effect of nitrogen-doping and post annealing on wettability and band gap energy of TiO2 thin film, Appl. Surf. Sci. (2020) 500, https://doi.org/10.1016/j.apsusc.2019.144048. [100] N.X. Qian, X. Zhang, M. Wang, X. Sun, X.Y. Sun, C. Liu, R. Rao, Y.Q. Ma, Great enhancement in photocatalytic performance of (001)-TiO2 through N-doping via the vapor-thermal method, J. Photochem. Photobiol. A Chem. 386 (2020) 1–9, https://doi.org/10.1016/j.jphotochem.2019.112127. [101] M.M. Rashid, B. Mahltig, Electric conductivity of inorganic effect pigment coated cotton textile using sol-gel process, J. Text. Sci. Eng. 9 (2019) 9–10, https://doi.org/10.4172/2165-8064.1000395. [102] G. liu, P. Yang, Numerical investigation on photoelectric properties of Nb,N co- doped TiO2, Superlattices Microstruct. 129 (2019) 130–138, https://doi.org/10.1016/j.spmi. 2019.03.019. [103] Y. Chang, Y. Xuan, H. Quan, H. Zhang, S. Liu, Z. Li, K. Yu, J. Cao, Hydrogen treated Au/3DOM-TiO2 with promoted photocatalytic efficiency for hydrogen evolution from water splitting, Chem. Eng. J. 382 (2020), 122869, https://doi.org/10.1016/j.cej.2019.122869. [104] J. Chen, J. Zhang, M. Ye, Z. Rao, T. Tian, L. Shu, P. Lin, X. Zeng, S. Ke, Flexible TiO2/Au thin films with greatly enhanced photocurrents for photoelectrochemical water splitting, J. Alloys Compd. 815 (2020), 152471, https://doi.org/10.1016/j.jallcom.2019.152471. [105] B. Yu, F. Meng, M.W. Khan, R. Qin, X. Liu, Facile synthesis of AgNPs modified TiO2@g-C3N4 heterojunction composites with enhanced photocatalytic activity under simulated sunlight, Mater. Res. Bull. (2020) 121, https://doi.org/10.1016/j.materresbull.2019. 110641. [106] D. Gogoi, A. Namdeo, A.K. Golder, N.R. Peela, Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting, Int. J. Hydrogen Energy 45 (2020) 2729–2744, https://doi.org/10.1016/j.ijhydene.2019.11.127. [107] K. Qi, B. Cheng, J. Yu, W. Ho, A review on TiO2-based Z-scheme photocatalysts, Chin. J. Catal. 38 (2017) 1936–1955, https://doi.org/10.1016/S1872-2067(17) 62962-0. [108] L. Xu, Y. Shen, Y. Ding, L. Wang, Superhydrophobic and ultraviolet-blocking cotton fabrics based on TiO2/SiO2 composite nanoparticles, J. Nanosci. Nanotechnol. 18 (2018) 6879–6886, https://doi.org/10.1166/jnn.2018.15463. [109] J. Singh, S. Kumar, A.K.Manna Rishikesh, R.K. Soni, Fabrication of ZnO–TiO2 nanohybrids for rapid sunlight driven photodegradation of textile dyes and antibiotic residue molecules, Opt. Mater. (Amst) 107 (2020), 110138, https://doi.org/10.1016/j.optmat.2020.110138. [110] C. Chen, J. Zhou, J. Geng, R. Bao, Z. Wang, J. Xia, H. Li, Perovskite LaNiO3/TiO2 step-scheme heterojunction with enhanced photocatalytic activity, Appl. Surf. Sci. (2020) 503, https://doi.org/10.1016/j.apsusc.2019. 144287. [111] C.H. Nguyen, M.L. Tran, T.T. Van Tran, R.S. Juang, Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ ZnO/rGO composites, Sep. Purif. Technol. (2020) 232, https://doi.org/10.1016/j.seppur.2019.115962. [112] X. Li, T. Zhang, Y. Chen, Y. Fu, J. Su, L. Guo, Hybrid nanostructured copper(II) phthalocyanine/TiO2 films with efficient photoelectrochemical performance, Chem. Eng. J. (2020) 382, https://doi.org/10.1016/j.cej.2019.122783. [113] A. Mishra, B.S. Butola, Deposition of Ag doped TiO2 on cotton fabric for wash durable UV protective and antibacterial properties at very low silver concentration, Cellulose 24 (2017) 3555–3571, https://doi.org/10.1007/s10570-017-1352-4. [114] A. Mishra, H.S. Mohapatra, B.S. Butola, Imparting protection against UV radiations using in situ coating of titanium dioxide on textiles, Int. Lett. Chem. Phys. Astron. 82 (2019) 14–20, https://doi.org/10.18052/www.scipress. com/ilcpa.82.14. [115] A. Mishra, B.S. Butola, Silver-doped TiO2-coated cotton fabric as an effective photocatalytic system for dye decolorization in UV and visible light, Photochem. Photobiol. 95 (2019) 522–531, https://doi.org/10.1111/php.13009. [116] A. Peter, A. Mihaly-Cozmuta, C. Nicula, L. Mihaly-Cozmuta, A. Vulpoi, L. Baia, Fabric impregnated with TiO2 gel with self-cleaning property, Int. J. Appl. Ceram. Technol. 16 (2019) 666–681, https://doi.org/10.1111/ijac.13075. [117] E. Pakdel, W.A. Daoud, T. Afrin, L. Sun, X. Wang, Enhanced antimicrobial coating on cotton and its impact on UV protection and physical characteristics, Cellulose 24 (2017) 4003–4015, https://doi.org/10.1007/s10570-017-1374-y. [118] Z. Yang, M. Liu, W. Jiang, C. He, S. Xie, Y. Wang, Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process, Carbohydr. Polym. 197 (2018) 75–82. [119] G. Zhang, D. Wang, J. Yan, Y. Xiao, W. Gu, C. Zang, Study on the photocatalytic and antibacterial properties of TiO2 nanoparticles-coated cotton fabrics, Materials (Basel) 12 (2019), https://doi.org/10.3390/ma12122010. [120] A.F. Asokawati, E. Rahayuningsih, S.K. Wirawan, Photo-catalytic of nano ZnO/ TiO2 as a UV-protection agent on gambir colored cotton fabric, AIP Conf. Proc. (2019) 2085, https://doi.org/10.1063/1.5095024. [121] P. Dong, X. Cheng, Z. Huang, Y. Chen, Y. Zhang, X. Nie, X. Zhang, In-situ and phase controllable synthesis of nanocrystalline TiO2 on flexible cellulose fabrics via a simple hydrothermal method, Mater. Res. Bull. 97 (2018) 89–95, https://doi.org/10.1016/j.materresbull. 2017.08.036. [122] M.N. Morshed, X. Shen, H. Deb, S. Al Azad, X. Zhang, R. Li, Sonochemical fabrication of nanocryatalline titanium dioxide (TiO2) in cotton fiber for durable ultraviolet resistance, J. Nat. Fibers 17 (2020) 41–54, https://doi.org/10.1080/15440478.2018.1465506. [123] M. Aalipourmohammadi, A. Davodiroknabadi, A. Nazari, Homogeneous coatings of titanium dioxide nanoparticles on corona-treated cotton fabric for enhanced self-cleaning and antibacterial properties, Autex Res. J. (2019) 1–7, https://doi.org/10.2478/aut-2019-0058. [124] P. Wang, Y. Dong, B. Li, Z. Li, L. Bian, A sustainable and cost effective surface functionalization of cotton fabric using TiO2 hydrosol produced in a pilot scale: Condition optimization, sunlight-driven photocatalytic activity and practical applications, Ind. Crops Prod. 123 (2018) 197–207, https://doi.org/10.1016/j.indcrop.2018.06.067. [125] M.S. Stan, I.C. Nica, M. Popa, M.C. Chifiriuc, O. Iordache, I. Dumitrescu, L. Diamandescu, A. Dinischiotu, Reduced graphene oxide/TiO2 nanocomposites coating of cotton fabrics with antibacterial and self-cleaning properties, J. Ind. Text. 49 (2019) 277–293, https://doi.org/10.1177/1528083718779447. [126] M.S. Stan, M.A. Badea, G.G. Pircalabioru, M.C. Chifiriuc, L. Diamandescu, I. Dumitrescu, B. Trica, C. Lambert, A. Dinischiotu, Designing cotton fibers impregnated with photocatalytic graphene oxide/Fe, N-doped TiO2 particles as prospective industrial self-cleaning and biocompatible textiles, Mater. Sci. Eng. C. 94 (2019) 318–332, https://doi.org/10.1016/j.msec.2018.09.046. [127] E. Acayanka, J.B. Tarkwa, K.N. Nchimi, S.A.Y. Voufouo, A. Tiya-Djowe, G. Y. Kamgang, S. Laminsi, Grafting of N-doped titania nanoparticles synthesized by the plasma-assisted method on textile surface for sunlight photocatalytic self- cleaning applications, Surfaces and Interfaces 17 (2019), 100361, https://doi.org/10.1016/j.surfin.2019.100361. [128] M. Zahid, E.L. Papadopoulou, G. Suarato, V.D. Binas, G. Kiriakidis, I. Gounaki, O. Moira, D. Venieri, I.S. Bayer, A. Athanassiou, Fabrication of visible light- induced antibacterial and self-cleaning cotton fabrics using manganese doped TiO2 nanoparticles, ACS Appl. Bio Mater. 1 (2018) 1154–1164, https://doi.org/10.1021/acsabm.8b00357. [129] D. Cheng, M. He, J. Ran, G. Cai, J. Wu,, X. Wang, In situ reduction of TiO2 nanoparticles on cotton fabrics through polydopamine templates for photocatalysis and UV protection, Cellulose 25 (2018) 1413–1424, https://doi.org/10.1007/s10570-017-1606-1. [130] S. Li, T. Zhu, J. Huang, Q. Guo, G. Chen, Y. Lai, Durable antibacterial and UV- protective Ag/TiO2@fabrics for sustainable biomedical application, Int. J. Nanomed. 12 (2017) 2593–2606, https://doi.org/10.2147/IJN.S132035. [131] D. Chen, Z. Mai, X. Liu, D. Ye, H. Zhang, X. Yin, Y. Zhou, M. Liu, W. Xu, UV- blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsilsesquioxane and nano-TiO2, Cellulose 25 (2018) 3635–3647, https://doi.org/10.1007/s10570-018-1790-7. [132] S. Riaz, M. Ashraf, T. Hussain, M.T. Hussain, A. Younus, Fabrication of robust multifaceted textiles by application of functionalized TiO2 nanoparticles, Colloids Surfaces A Physicochem. Eng. Asp. 581 (2019), 123799, https://doi.org/10.1016/j.colsurfa.2019.123799. [133] I. Harya, F. Izinilah, I.R. Hakiki, S. Slamet, Study of self cleaning fabric modified by Cu doped TiO2 with the addition of tetraethyl orthosilicate (TEOS), AIP Conf. Proc. (2018) 2024, https://doi.org/10.1063/1.5064357. [134] J. Hu, Q. Gao, L. Xu, M. Wang, M. Zhang, K. Zhang, W. Liu, G. Wu, Functionalization of cotton fabrics with highly durable polysiloxane-TiO2 hybrid layers: potential applications for photo-induced water-oil separation, UV shielding, and self-cleaning, J. Mater. Chem. A 6 (2018) 6085–6095, https://doi.org/10.1039/c7ta11231a. [135] D. Cheng, M. He, G. Cai, X. Wang, J. Ran, J. Wu, Durable UV-protective cotton fabric by deposition of multilayer TiO2 nanoparticles films on the surface, J. Coatings Technol. Res. 15 (2018) 603–610, https://doi.org/10.1007/s11998-017-0021-8. [136] M.Z. Khan, V. Baheti, M. Ashraf, T. Hussain, A. Ali, A. Javid, A. Rehman, Development of UV protective, superhydrophobic and antibacterial textiles using ZnO and TiO2 nanoparticles, Fibers Polym. 19 (2018) 1647–1654, https://doi.org/10.1007/s12221-018-7935-3. [137] M.M Rashid, B. Mahltig, Inorganic effect pigment-binder system following sol-gel process –application for optical textile functionalization, J. Fash. Technol. Text. Eng. (2018) 06, https://doi.org/10.4172/2329-9568.1000178. [138] J. Yu, Z. Pang, C. Zheng, T. Zhou, J. Zhang, H. Zhou, Q. Wei, Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity, Appl. Surf. Sci. 470 (2019) 84–90, https://doi.org/10.1016/j.apsusc.2018.11.112. [139] A. Mamun, M. Trabelsi, M. Klo¨cker, L. Sabantina, C. Großerhode, T. Blachowicz, G. Gro¨tsch, C. Cornelißen, A. Streitenberger, A. Ehrmann, Electrospun nanofiber mats with embedded non-sintered TiO2 for dye-sensitized solar cells (DSSCs), in:7, 2019, https://doi.org/10.3390/fib7070060. [140] I. Ahmad, C.W. Kan, Z. Yao, Photoactive cotton fabric for UV protection and self- cleaning, RSC Adv. 9 (2019) 18106–18114, https://doi.org/10.1039/c9ra02023c. [141] A. Aksit, N. Onar Camlibel, E. Topel Zeren, B. Kutlu, Development of antibacterial fabrics by treatment with Ag-doped TiO2 nanoparticles, J. Text. Inst. 108 (2017) 2046–2056, https://doi.org/10.1080/00405000. 2017. 1311766. [142] T.I. Shaheen, S.S. Salem, S. Zaghloul, A new facile strategy for multifunctional textiles development through in situ deposition of SiO2/TiO2 nanosols hybrid, Ind. Eng. Chem. Res. 58 (2019) 20203–20212, https://doi.org/10.1021/acs.iecr.9b04655. [143] M.M. Ibrahim, A. Mezni, H.S. El-Sheshtawy, A.A. Abu Zaid, M. Alsawat, N. El- Shafi, S.I. Ahmed, A.A. Shaltout, M.A. Amin, T. Kumeria, T. Altalhi, Direct Z- scheme of Cu2O/TiO2 enhanced self-cleaning, antibacterial activity, and UV protection of cotton fiber under sunlight, Appl. Surf. Sci. 479 (2019) 953–962, https://doi.org/10.1016/j.apsusc.2019.02.169. [144] J. Jaksik, P. Tran, V. Galvez, I. Martinez, D. Ortiz, A. Ly, M. McEntee, E.M. Durke, S.T.J. Aishee, M. Cua, A. Touhami, H.J. Moore, M.J. Uddin, Advanced cotton fibers exhibit efficient photocatalytic self-cleaning and antimicrobial activity, J. Photochem. Photobiol. A Chem. 365 (2018) 77–85, https://doi.org/10.1016/j.
jphotochem.2018.07.037. [145] Y. Rilda, S. Syukri, D. Ferlinda, A. Iasa, A. Agustien, The function of cross linker carboxylic acid for TiO2/Chitosan/SiO2 coated as self cleaning fabrics, Orient. J. Chem. 34 (2018) 2942–2947, https://doi.org/10.13005/ojc/340633. [146] Y. Liu, G. Huang, C. An, X. Chen, P. Zhang, R. Feng, W. Xiong, Use of Nano-TiO2 self-assembled flax fiber as a new initiative for immiscible oil/water separation, J. Clean. Prod. (2020) 249, https://doi.org/10.1016/j.jclepro. 2019.119352. [147] S. Zhou, L. Xia, K. Zhang, Z. Fu, Y. Wang, Q. Zhang, L. Zhai, Y. Mao, W. Xu, Titanium dioxide decorated natural cellulosic Juncus effusus fiber for highly efficient photodegradation towards dyes, Carbohydr. Polym. 232 (2020) 1–9, https://doi.org/10.1016/j.carbpol. 2020. 115830. [148] A. Moqeet Hai, M. Ahmed, A. Afzal, A. Jabbar, S. Faheem, Characterization and antibacterial property of Kapok fibers treated with chitosan/AgCl–TiO2 colloid, J. Text. Inst. 110 (2019) 100–104, https://doi.org/10.1080/00405000.2018.1466629. [149] M. Abbas, H. Iftikhar, M.H. Malik, A. Nazir, Surface coatings of TiO2 nanoparticles onto the designed fabrics for enhanced self-cleaning properties, Coatings 8 (2018), https://doi.org/10.3390/coatings8010035. [150] A.W. Jatoi, I.S. Kim, Q.Q. Ni, Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications, Carbohydr. Polym. 207 (2019) 640–649, https://doi.org/10.1016/j.carbpol.2018.12.029. [151] Y. Liang, E. Pakdel, M. Zhang, L. Sun, X. Wang, Photoprotective properties of alpaca fiber melanin reinforced by rutile TiO2 nanoparticles: a study on wool fabric, Polym. Degrad. Stab. 160 (2019) 80–88, https://doi.org/10.1016/j.polymdegradstab.2018.12.006. [152] X.W. Cheng, J.P. Guan, X.H. Yang, R.C. Tang, Durable flame retardant wool fabric treated by phytic acid and TiO2 using an exhaustion-assisted pad-dry-cure process, Thermochim. Acta 665 (2018) 28–36, https://doi.org/10.1016/j.tca.2018.05.011. [153] H. Yang, Y. Wang, K. Liu, X. Liu, F. Chen, W. Xu, Facile fabrication of ultraviolet- protective silk fabrics via atomic layer deposition of TiO2 with subsequent polyvinylsilsesquioxane modification, Text. Res. J. 89 (2019) 3529–3538, https://doi.org/10.1177/0040517518813626. [154] F. Chen, H. Yang, K. Li, X. Liu, B. Deng, X. Xiao, X. Yang, B. Dong, S. Wang, W. Xu, Exceptional wearability of multifunctional TiO2-coated hybrid silk fabric with controllable ultraviolet-protection properties, Text. Res. J. 88 (2018) 2757–2765, https://doi.org/10.1177/0040517517729390. [155] M. Masae, L. Sengyi, L. Wanapong, Hydrophobic and antibacterial activity of silk textile surfaces using reduced graphene oxide (RGO) and TiO2 coating, J. Mater. Sci. Appl. Energy 7 (2018) 307–316. [156] W. Nitayaphat, P. Jirawongcharoen, T. Trijaturon, Self-cleaning properties of silk fabrics functionalized with TiO2/SiO2 composites, J. Nat. Fibers. 15 (2018) 262–272, https://doi.org/10.1080/15440478.2017.1325428. [157] X.W. Cheng, J.P. Guan, X.H. Yang, R.C. Tang, Improvement of flame retardancy of silk fabric by bio-based phytic acid, nano-TiO2, and polycarboxylic acid, Prog. Org. Coatings 112 (2017) 18–26, https://doi.org/10.1016/j. porgcoat.2017.06.025. [158] Z. Du, C. Cheng, L. Tan, J. Lan, S. Jiang, L. Zhao, R. Guo, Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation, Appl. Surf. Sci. 435 (2018) 626–634, https://doi.org/10.1016/j.apsusc.2017.11.136. [159] M.A. Arfaoui, P.I. Dolez, M. Dub´e, E´. David, Preparation of a hydrophobic recycled jute-based nonwoven using a titanium dioxide/stearic acid coating, J. Text. Inst. 110 (2019) 16–25, https://doi.org/10.1080/00405000.2018. 1455313. [160] N. Piri, A. Shams-Nateri, J. Mokhtari, The effect of TiO2 nanopigment on the optical properties of polyester fabric in UV–VIS–NIR regions, Color Res. Appl. 44 (2019) 257–263, https://doi.org/10.1002/col.22334. [161] J. Liu, Y. Li, S. Arumugam, J. Tudor, S. Beeby, Screen printed dye-sensitized solar cells (DSSCs) on woven polyester cotton fabric for wearable energy harvesting applications, Mater. Today Proc. 5 (2018) 13753–13758, https://doi.org/10.1016/j.matpr.2018. 02.015. [162] Z. Moridi Mahdieh, S. Shekarriz, F. Afshar Taromi, M. Montazer, A new method for in situ synthesis of Ag–TiO2 nanocomposite particles on polyester/cellulose fabric by photoreduction and self-cleaning properties, Cellulose 25 (2018) 2355–2366, https://doi.org/10.1007/s10570-018-1694-6. [163] T. Harifi, M. Montazer, Application of sonochemical technique for sustainable surface modification of polyester fibers resulting in durable nano-sonofinishing, Ultrason. Sonochem. 37 (2017) 158–168, https://doi.org/10.1016/j.ultsonch.2017.01.006. [164] N.P. Prorokova, T.Y. Kumeeva, O.Y. Kuznetsov, Antimicrobial properties of polyester fabric modified by nanosized titanium dioxide, Inorg. Mater. Appl. Res. 9 (2018) 250–256, https://doi.org/10.1134/S2075113318020235. [165] P. Katiyar, S. Mishra, A. Srivastava, N.E. Prasad, Preparation of TiO2–SiO2 hybrid nanosols coated flame-retardant polyester fabric possessing dual contradictory characteristics of superhydrophobicity and self cleaning ability, J. Nanosci. Nanotechnol. 20 (2019) 1780–1789, https://doi.org/10.1166/jnn.2020.17166. [166] M.Z. Khan, V. Baheti, J. Militky, J. Wiener, A. Ali, Self-cleaning properties of polyester fabrics coated with flower-like TiO2 particles and trimethoxy (octadecyl)silane, J. Ind. Text. 50 (2020) 543–565, https://doi.org/10.1177/1528083719836938. [167] K.S. Min, R. Manivannan, Y.A. Son, Porphyrin Dye/TiO2 imbedded PET to improve visible-light photocatalytic activity and organosilicon attachment to enrich hydrophobicity to attain an efficient self-cleaning material, Dye. Pigment. 162 (2019) 8–17, https://doi.org/10.1016/j.dyepig.2018.10.014. [168] Y. Xu, W. Wen, J.M. Wu, Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances, J. Hazard. Mater. 343 (2018) 285–297, https://doi.org/10.1016/j.jhazmat.2017. 09.044. [169] R.D. Kale, T. Potdar, P. Kane, R. Singh, Nanocomposite polyester fabric based on graphene/titanium dioxide for conducting and UV protection functionality, Graphene Technol. 3 (2018) 35–46, https://doi.org/10.1007/s41127-018-0021-1. [170] Z. Li, Y. Dong, B. Li, P. Wang, Z. Chen, L. Bian, Creation of self-cleaning polyester fabric with TiO2 nanoparticles via a simple exhaustion process: conditions optimization and stain decomposition pathway, Mater. Des. 140 (2018) 366–375, https://doi.org/10.1016/j.matdes.2017.12.014. [171] F. Emami, S. Shekarriz, Z. Shariatinia, Z.Moridi Mahdieh, Self-cleaning properties of nylon 6 fabrics treated with corona and TiO2 nanoparticles under both ultraviolet and daylight irradiations, Fibers Polym. 19 (2018) 1014–1023, https://doi.org/10.1007/s12221-018-1025-4. [172] C. Zheng, C.E. Zhou, Z. Qi, Q. Zhou, C. Wang, Microwave-assisted preparation of pyrite and its sensitisation of titanium dioxide in self-cleaning aramid fabrics, Color. Technol. 134 (2018) 284–291, https://doi.org/10.1111/cote.12348. [173] P. Dong, X. Nie, Z. Jin, Z. Huang, X. Wang, X. Zhang, Dual dielectric barrier discharge plasma treatments for synthesis of Ag-TiO2 functionalized polypropylene fabrics, Ind. Eng. Chem. Res. 58 (2019) 7734–7741, https://doi. org/10.1021/acs.iecr.9b00047. [174] Y. Wang, S. Peng, X. Shi, Y. Lan, G. Zeng, K. Zhang, X. Li, A fluorine-free method for fabricating multifunctional durable superhydrophobic fabrics, Appl. Surf. Sci. 505 (2020), 144621, https://doi.org/10.1016/j.apsusc.2019.144621. [175] X. Hou, Y. Cai, M. Mushtaq, X. Song, Q. Yang, F. Huang, Q. Wei, Deposition of TiO2 nanoparticles on porous polylactic acid fibrous substrates and its photocatalytic capability, J. Nanosci. Nanotechnol. 18 (2018) 5617–5623,
https://doi.org/10.1166/jnn.2018.15426. [176] N. Bouazizi, A. Abed, S. Giraud, A.El Achari, C. Campagne, M.N. Morshed, O. Thoumire, R.El Moznine, O. Cherkaoui, J. Vieillard, F.Le Derf, Development of new composite fibers with excellent UV radiation protection, Phys. E Low- Dimensional Syst. Nanostruct. 118 (2020), 113905, https://doi.org/10.1016/j.physe.2019.113905. [177] S. Karagoz, N.B. Kiremitler, M. Sakir, S. Salem, M.S. Onses, E. Sahmetlioglu, A. Ceylan, E. Yilmaz, Synthesis of Ag and TiO2 modified polycaprolactone electrospun nanofibers (PCL/TiO2-Ag NFs) as a multifunctional material for SERS, photocatalysis and antibacterial applications, Ecotoxicol. Environ. Saf. (2020) 188, https://doi.org/10.1016/j.ecoenv. 2019.109856. [178] C. Li, Z. Li, X. Ren, Preparation and characterization of polyester fabrics coated with TiO2/Benzotriazole for UV protection, Colloids Surf. A Physicochem. Eng. Asp. 577 (2019) 695–701, https://doi.org/10.1016/j.colsurfa. 2019.06.030. [179] E. Pakdel, M. Naebe, S. Kashi, Z. Cai, W. Xie, A.C.Y. Yuen, M. Montazer, L. Sun, X. Wang, Functional cotton fabric using hollow glass microspheres: Focus on thermal insulation, flame retardancy, UV-protection and acoustic performance, Prog. Org. Coatings 141 (2020), 105553, https://doi.org/10.1016/j. porgcoat.2020.105553. [180] Y. Rilda, D. Damara, Y.E. Putri, R. Refinel, A. Agustien, H. Pardi, Pseudomonas aeruginosa antibacterial textile cotton fiber construction based on ZnO–TiO2 nanorods template, Heliyon 6 (2020), https://doi.org/10.1016/j.heliyon.2020. e03710. [181] A. Bentis, A. Boukhriss, S. Gmouh, Flame-retardant and water-repellent coating on cotton fabric by titania–boron sol–gel method, J. Sol-Gel Sci. Technol. 94 (2020) 719–730, https://doi.org/10.1007/s10971-020-05224-z. [182] M. Solovyeva, D. Selishchev, S. Cherepanova, G. Stepanov, E. Zhuravlev, V. Richter, D. Kozlov, Self-cleaning photoactive cotton fabric modified with nanocrystalline TiO2 for efficient degradation of volatile organic compounds and DNA contaminants, Chem. Eng. J. 388 (2020), 124167, https://doi.org/10.1016/j.cej.2020.124167. [183] T. He, H. Zhao, Y. Liu, C. Zhao, L. Wang, H. Wang, Y. Zhao, H. Wang, Facile fabrication of superhydrophobic titanium dioxide-composited cotton fabrics to realize oil-water separation with efficiently photocatalytic degradation for water- soluble pollutants, Colloids Surf. A Physicochem. Eng. Asp. 585 (2020), 124080, https://doi.org/10.1016/j.colsurfa.2019. 124080. [184] M. Bekrani, S. Zohoori, A. Davodiroknabadi, Producing multifunctional doped with nano cotton TiO2 fabrics and ZnO using nano CeO2, Autex Res. J. 20 (2020) 78–84, https://doi.org/10.2478/aut-2019-0057. [185] H.L. Yu, Q.X. Wu, J. Wang, L.Q. Liu, B. Zheng, C. Zhang, Y.G. Shen, C.L. Huang, B. Zhou, J.R. Jia, Simple fabrication of the Ag-Ag2O-TiO2 photocatalyst thin films on polyester fabrics by magnetron sputtering and its photocatalytic activity, Appl. Surf. Sci. (2020) 503, https://doi.org/10.1016/j.apsusc.2019. 144075. [186] W. Chen, Y. Lu, W. Shen, H. Gu, Y. Xu, T. Zhu, Z. Chen, Solar-driven efficient degradation of emerging contaminants by g-C3N4- shielding polyester fiber/TiO2 composites, Appl. Catal. B Environ. 258 (2020), 117960, https://doi.org/10.1016/j.apcatb.2019.117854. [187] S.S.B. Touhid, M.R.K. Shawon, H. Deb, N.A. Khoso, A. Ahmed, F.Y. Fu, X.D. Liu, Nature inspired rGO-TiO2 micro-flowers on polyester fabric using semi- continuous dyeing method: A binder-free approach towards durable antibacterial performance, Synth. Met. (2020) 261, https://doi.org/10.1016/j.synthmet. 2020.116298. [188] X. Yuan, S. Liang, H. Ke, Q. Wei, Z. Huang, D. Chen, Photocatalytic property of polyester fabrics coated with Ag/TiO2 composite films by magnetron sputtering, Vacuum 172 (2020), 109103, https://doi.org/10.1016/j.vacuum.2019.109103. [189] T. Jeong, S. Lee, Photocatalytic self-cleaning by nanocomposite fibers containing titanium dioxide nanoparticles, in: 20, 2019, pp. 25–34, https://doi.org/10.1007/s12221-019-8678-5. [190] L. Frunza, L. Diamandescu, I. Zgura, S. Frunza, C.P. Ganea, C.C. Negrila, M. Enculescu, M. Birzu, Photocatalytic activity of wool fabrics deposited at low temperature with ZnO or TiO2 nanoparticles: methylene blue degradation as a test reaction, Catal. Today 306 (2018) 251–259, https://doi.org/10.1016/j. cattod.2017.02.044. [191] J. Gao, W. Li, X. Zhao, L. Wang, N. Pan, Durable visible light self-cleaning surfaces imparted by TiO2/SiO2/GO photocatalyst, Text. Res. J. 89 (2019) 517–527, https://doi.org/10.1177/0040517517750647. [192] H. Zhao, Z. Li, X. Lu, W. Chen, Y. Cui, B. Tang, J. Wang, X. Wang, Fabrication of PANI@TiO2 nanocomposite and its sunlight-driven photocatalytic effect on cotton fabrics, J. Text. Inst. (2020), https://doi.org/10.1080/00405000.2020.1848113. [193] M. Olak-Kucharczyk, G. Szczepan´ska, M.H. Kudzin, M. Pisarek, The photocatalytical properties of RGO/TiO2 coated fabrics, Coatings 10 (2020) 1–15, https://doi.org/10.3390/coatings10111041. [194] S. Asadnajafi, S. Shahidi, D. Dorranian, In situ synthesis and exhaustion of nano TiO2 on fabric samples using laser ablation method, J. Text. Inst. 111 (2020) 122–128, https://doi.org/10.1080/00405000.2019.1624035. [195] D.M. Blake, P.C. Maness, Z. Huang, E.J. Wolfrum, J. Huang, W.A. Jacoby, Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells, Sep. Purif. Methods 28 (1999) 1–50, https://doi. org/10.1080/03602549909351643. [196] C. Regmi, B. Joshi, S.K. Ray, G. Gyawali, R.P. Pandey, Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater, Front. Chem. 6 (2018) 1–6, https://doi.org/10.3389/fchem.2018.00033. [197] A.M. Díez-Pascual, Antimicrobial Coatings Based on Linseed oil/TiO2 Nanocomposites, Elsevier Inc., 2018, https://doi.org/10.1016/B978-0-12-811982-2.00019-6. [198] P.V. Laxma Reddy, B. Kavitha, P.A. Kumar Reddy, K.H. Kim, TiO2-based photocatalytic disinfection of microbes in aqueous media: a review, Environ. Res. 154 (2017) 296–303, https://doi.org/10.1016/j.envres.2017.01. 018. [199] M.J. Hajipour, K.M. Fromm, A. Akbar Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Antibacterial properties of nanoparticles, Trends Biotechnol. 30 (2012) 499–511, https://doi.org/10.1016/j.tibtech. 2012.06.004. [200] M. Saraswati, R.L. Permadani, A. Slamet, The innovation of antimicrobial and self-cleaning using Ag/TiO2 nanocomposite coated on cotton fabric for footwear application, IOP Conf. Ser. Mater. Sci. Eng. (2019) 509, https://doi.org/10.1088/1757-899X/509/1/012091. [201] I. Perelshtein, G. Applerot, N. Perkas, J. Grinblat, A. Gedanken, A one-step process for the antimicrobial finishing of textiles with crystalline TiO2 nanoparticles, Chem. – Eur. J. 18 (2012) 4575–4582, https://doi.org/10.1002/
chem.201101683. [202] S. Hashemizad, M. Montazer, S.S. Mireshghi, Sonoloading of nano-TiO2 on sono- alkali hydrolyzed polyester fabric, J. Text. Inst. 108 (2017) 117–122., https://doi. org/10.1080/00405000.2016.1159271. [203] M. Gorjanc, M. S?ala, Durable antibacterial and UV protective properties of cellulose fabric functionalized with Ag/TiO2 nanocomposite during dyeing with reactive dyes, Cellulose 23 (2016) 2199–2209, https://doi.org/10.1007/s10570-016-0945-7. [204] L. Jia, X. Huang, H. Liang, Q. Tao, Enhanced hydrophilic and antibacterial efficiencies by the synergetic effect TiO2 nanofiber and graphene oxide in cellulose acetate nanofibers, Int. J. Biol. Macromol. 132 (2019) 1039–1043, https://doi.org/10.1016/j.ijbiomac.2019. 03.204. [205] L.P. Liu, X.N. Yang, L. Ye, D.D. Xue, M. Liu, S.R. Jia, Y. Hou, L.Q. Chu, C. Zhong, Preparation and characterization of a photocatalytic antibacterial material: Graphene oxide/TiO2/bacterial cellulose nanocomposite, Carbohydr. Polym. 174 (2017) 1078–1086, https://doi.org/10.1016/j.carbpol.2017.07.042. [206] S. Ul-Islam, B.S. Butola, Advanced Functional Textiles and Polymers: Fabrication, Processing and Applications, John Wiley & Sons, 2019. [207] M. Shabbir, S. Ahmed, J.N. Sheikh, Frontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques, John Wiley & Sons, 2020. [208] H. Yang, S. Zhu, N. Pan, Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme, J. Appl. Polym. Sci. 92 (2004) 3201–3210, https://doi.org/10.1002/app.20327. [209] D. Saravanan, UV protection textile materials, Autex Res. J. 7 (2007) 53–62. [210] A. Mishra, B.S. Butola, Development of cotton fabrics with durable UV protective and self-cleaning property by deposition of low TiO2 levels through sol-gel Process, Photochem. Photobiol. 94 (2018) 503–511, https://doi.org/10.1111/php.12888. [211] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202 (1997) 1–8, https://doi.org/10.1007/s004250050096. [212] P. Wagner, R. Fürstner, W. Barthlott, C. Neinhuis, Quantitative assessment to the structural basis of water repellency in natural and technical surfaces, J. Exp. Bot. 54 (2003) 1295–1303, https://doi.org/10.1093/jxb/erg127. [213] Z. Guo, W. Liu, Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure, Plant Sci. 172 (2007) 1103–1112, https://doi.org/10.1016/j.plantsci.2007.03.005. [214] B. Bhushan, M. Nosonovsky, Y.C. Jung, Lotus Effect: Roughness-Induced Superhydrophobic Surfaces, Springer, Berlin Heidelberg, 2008. [215] A. Tuteja, W. Choi, G.H. McKinley, R.E. Cohen, M.F. Rubner, Design parameters for superhydrophobicity and superoleophobicity, MRS Bull. 33 (2008) 752–758, https://doi.org/10.1557/mrs2008.161. [216] J. Vasiljevi´c, M. Zorko, B. Tom?si?c, I. Jerman, B. Simon?ci?c, Fabrication of the hierarchically roughened bumpy-surface topography for the long-lasting highly oleophobic “lotus effect” on cotton fibres, Cellulose 23 (2016) 3301–3318, https://doi.org/10.1007/s10570-016-1007-x. [217] M.Z. Khan, J. Militky, V. Baheti, J. Wiener, M. Vik, Development of durable superhydrophobic and UV protective cotton fabric via TiO2/trimethoxy (octadecyl)silane nanocomposite coating, J. Text. Inst. 0 (2020) 1–12, https:/doi.org/10.1080/00405000.2020.1834235. [218] B.K. Tudu, A. Sinhamahapatra, A. Kumar, Surface modification of cotton fabric using TiO2 nanoparticles for self-cleaning, oil-water separation, antistain, anti- water absorption, and antibacterial properties, ACS Omega 5 (2020) 7850–7860, https://doi.org/10.1021/acsomega.9b04067. [219] Q. Guo, C. Zhou, Z. Ma, X. Yang, Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges, Adv. Mater. 31 (2019) 1–26, https://doi.org/10.1002/adma.201901997. [220] M. Radoici´c, G. C´iri´c-Marjanovi´c, D. Milicevi´c, E. Suljovruji´c, M. Milosevi´c, J. Kuljanin Jakovljevi´c, Z. Saponji´c, Fine-tuning of conductive and dielectric properties of polypyrrole/TiO2 nanocomposite-coated polyamide fabric, Compos. Interfaces 00 (2020) 1–14, https://doi.org/10.1080/09276440.2020. 180521. [221] A. Ehrmann, T. Blachowicz, Recent coating materials for textile-based solar cells, AIMS Mater. Sci. 6 (2019) 234–251, https://doi.org/10.3934/MATERSCI.2019.2.234. [222] R. Singh, A.R. Polu, B. Bhattacharya, H.W. Rhee, C. Varlikli, P.K. Singh, Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application, Renew. Sustain. Energy Rev. 65 (2016) 1098–1117, https://doi.org/10.1016/j.rser.2016.06.026. [223] J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends, Renew. Sustain. Energy Rev. 68 (2017) 234–246, https://doi.org/10.1016/j.rser.2016.09.097. [224] J.M. Cole, G. Pepe, O.K. Al Bahri, C.B. Cooper, Cosensitization in dye-sensitized solar cells, Chem. Rev. 119 (2019) 7279–7327, https://doi.org/10.1021/acs. chemrev.8b00632. [225] Q. Liu, J. Wang, Dye-sensitized solar cells based on surficial TiO2 modification, Sol. Energy 184 (2019) 454–465, https://doi.org/10.1016/j.solener.2019.04.032. [226] K. Sharma, V. Sharma, S.S. Sharma, Dye-sensitized solar cells: fundamentals and current status, Nanoscale Res. Lett. 13 (2018), https://doi.org/10.1186/s11671-018-2760-6. [227] F. Babar, U. Mehmood, H. Asghar, M.H. Mehdi, A.U.H. Khan, H. Khalid, N. ul Huda, Z. Fatima, Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: a comprehensive review, Renew. Sustain. Energy Rev. 129 (2020), 109919, https://doi.org/10.1016/j.rser.2020. 109919. [228] M. Hosseinnezhad, K. Gharanjig, M.K. Yazdi, P. Zarrintaj, S. Moradian, M.R. Saeb, F.J. Stadler, Dye-sensitized solar cells based on natural photosensitizers: a green view from Iran, J. Alloys Compd. 828 (2020), 154329, https://doi.org/10.1016/j. jallcom.2020.154329. [229] N.G. Park, J. Van De Lagemaat, A.J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells, J. Phys. Chem. B 104 (2000) 8989–8994, https://doi.org/10.1021/jp994365l. [230] V. Ronda´n-Go´mez, I. Montoya De Los Santos, D. Seuret-Jim´enez, F. Ayala-Mato´, A. Zamudio-Lara, T. Robles-Bonilla, M. Courel, Recent advances in dye-sensitized solar cells, Appl. Phys. A Mater. Sci. Process (2019) 125, https://doi.org/10.1007/s00339-019-3116-5. [231] B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D. Wang, S. Dou, Graphene- based composites for electrochemical energy storage, Energy Storage Mater. 24 (2020) 22–51, https://doi.org/10.1016/j.ensm.2019.08.004. [232] X. Li, J. Yu, S. Wageh, A.A. Al-Ghamdi, J. Xie, Graphene in photocatalysis: a review, Small 12 (2016) 6640–6696, https://doi.org/10.1002/smll.201600382. [233] A. Nel, T. Xia, L. Ma¨dler, N. Li, Toxic potential of materials at the nanolevel, Science 311 (80-.) (2006) 622–627, https://doi.org/10.1126/science.1114397. [234] R. Liu, H.H. Liu, Z. Ji, C.H. Chang, T. Xia, A.E. Nel, Y. Cohen, Evaluation of toxicity ranking for metal oxide nanoparticles via an in vitro dosimetry model, ACS Nano 9 (2015) 9303–9313, https://doi.org/10.1021/acsnano. 5b04420. [235] H. Zhang, Z. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, S. Lin, X. Wang, Y.P. Liao, M. Wang, L. Li, R. Rallo, R. Damoiseaux, D. Telesca, L. Ma¨dler, Y. Cohen, J.I. Zink, A.E. Nel, Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation, ACS Nano 6 (2012) 4349–4368, https://doi.org/10.1021/nn3010087. [236] M. Pink, N. Verma, S. Schmitz-Spanke, Benchmark dose analyses of toxic endpoints in lung cells provide sensitivity and toxicity ranking across metal oxide nanoparticles and give insights into the mode of action, Toxicol. Lett. 331 (2020) 218–226, https://doi.org/10.1016/j.toxlet.2020.06.012.