HomeFeatured Articles

Inorganic Finishing for Textile Fabrics: References

inorganic finishing for textiles

Abstract: The surface modification of textile fabrics and therefore, the development of advanced textile materials featuring specific implemented and new properties, such as improved durability and resistance, is increasingly in demand from modern society and end-users. In this regard, the sol–gel technique has shown to be an innovative and convenient synthetic route for developing functional sol–gel coatings useful for the protection of textile materials. Compared with the conventional textile finishing process, this technique is characterized by several advantages, such as the environmentally friendly approaches based on one-step applications and low concentration of non-hazardous chemicals. The sol–gel method, starting from inorganic metal alkoxides or metal salts, leads to inorganic sols containing particles that enable a chemical or physical modification of fiber surfaces, giving rise to final multifunctional properties of treated textile fabrics. This review considered the recent developments in the synthesis of inorganic nanoparticles and nanosols by sol– gel approach for improving wear and UV resistance, as well as antibacterial or antimicrobial effects for textile applications.

Keywords: inorganic coatings; functional coatings; stimuli-responsive polymers; sol–gel; antimicrobial; wear-resistance; photo-catalytic activity; UV protection


NCM SEPTEMBER 2023

References:

1. Schindler, W.D.; Hauser, P.J. Chemical Finishing of Textiles; Woodhead Publishing Ltd.: Cambridge, England; CRC Press LLC: Cambridge, England, 2004.

2. Bozzi, A.; Yuranova, T.; Kiwi, J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. J. Photochem. Photobiol. A Chem. 2005, 172, 27–34. https://doi.org/10.1016/j.jphotochem.2004.11.010.

3. Gray, J.E.; Norton, P.R.; Alnouno, R.; Marold, C.L.; Valvano, M.A.; Griffiths, K. Biological efficacy of electroless-deposited silver on plasma activated polyurethane. Biomaterials 2003, 24, 2759–2765.

4. Xu, B.; Niu, M.; Wei, L.; Hou, W.; Liu, X. The structural analysis of biomacromolecule wool fiber with Ag-loading SiO2 nano- antibacterial agent by UV radiation. J. Photochem. Photobiol. A Chem. 2007, 188, 98–105. https://doi.org/10.1016/j.jphotochem.2006.11.025.

5. Hegemann, D.; Hossain, M.M.; Balazs, D.J. Nanostructured plasma coatings to obtain multifunctional textile surfaces. Prog. Org. Coatings 2007, 58, 237–240. https://doi.org/10.1016/j.porgcoat.2006.08.027.

6. He, J.; Kunitake, T.; Nakao, A. Facile In Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers. Chem. Mater. 2003, 15, 4401–4406. https://doi.org/10.1021/cm034720r.

7. Singh, M.; Sharma, R.; Banerjee, U. Biotechnological applications of cyclodextrins. Biotechnol. Adv. 2002, 20, 341–359. https://doi.org/10.1016/S0734-9750(02)00020-4.

8. Park, S.-H.; Oh, S.-G.; Mun, J.-Y.; Han, S.-S. Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf. B Biointerfaces 2006, 48, 112–118. https://doi.org/10.1016/j.colsurfb.2006.01.006.

9. Sfameni, S.; Rando, G.; Marchetta, A.; Scolaro, C.; Cappello, S.; Urzì, C.; Visco, A.; Plutino, M.R. Development of Eco-Friendly Hydrophobic and Fouling-Release Coatings for Blue-Growth Environmental Applications: Synthesis, Mechanical Characterization and Biological Activity. Gels 2022, 8, 528.

10. Sfameni, S.; Rando, G.; Galletta, M.; Ielo, I.; Brucale, M.; De Leo, F.; Cardiano, P.; Cappello, S.; Visco, A.; Trovato, V.; et al. Design and Development of Fluorinated and Biocide-Free Sol–Gel Based Hybrid Functional Coatings for Anti-Biofouling/Foul-Release Activity. Gels 2022, 8, 538.

11. Trovato, V.; Colleoni, C.; Castellano, A.; Plutino, M.R. The key role of 3-glycidoxypropyltrimethoxysilane sol–gel precursor in the development of wearable sensors for health monitoring. J. Sol-Gel Sci. Technol. 2018, 87,
27–40. https://doi.org/10.1007/s10971-018-4695-x.

12. Sakka, S. Sol-Gel Science and Technology: Topics and Fundamental Research and Applications; Sakka, S., Ed.; Kluwer Academic Publishers: Norwell, MA, USA, 2003; ISBN 978-1402072918.

13. Mahltig, B.; Textor, T. Nanosols and Textiles; World Scientific: Singapore, 2008; ISBN 978-981-283-350-1.

14. Alongi, J.; Ciobanu, M.; Malucelli, G. Sol–gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: Optimisation of the process and evaluation of the durability. Cellulose 2011, 18, 167–177.
https://doi.org/10.1007/s10570-010-9470-2.

15. Brancatelli, G.; Colleoni, C.; Massafra, M.R.; Rosace, G. Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics. Polym. Degrad. Stab. 2011, 96, 483–490.
https://doi.org/10.1016/j.polymdegradstab.2011.01.013.

16. Malucelli, G. Sol–Gel Flame Retardant and/or Antimicrobial Finishings for Cellulosic Textiles. In Handbook of Renewable Materials for Coloration and Finishing; Yusuf, M., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2018; pp. 501–520.

17. Xing, Y.; Yang, X.; Dai, J. Antimicrobial finishing of cotton textile based on water glass by sol–gel method. J. Sol-Gel Sci. Technol. 2007, 43, 187–192. https://doi.org/10.1007/s10971-007-1575-1.

18. Mahltig, B.; Fiedler, D.; Böttcher, H. Antimicrobial Sol?Gel Coatings. J. Sol-Gel Sci. Technol. 2004, 32, 219–222.
https://doi.org/10.1007/s10971-004-5791-7.

19. Mavrić, Z.; Tomšič, B.; Simončič, B. Recent advances in the ultraviolet protection finishing of textiles. Tekstilec 2018, 61, 201–220. https://doi.org/10.14502/Tekstilec2018.61.201-220.

20. Huang, K.S.; Nien, Y.H.; Hsiao, K.C.; Chang, Y.S. Application of DMEU/SiO2 gel solution in the antiwrinkle finishing of cotton fabrics. J. Appl. Polym. Sci. 2006, 102, 4136–4143. https://doi.org/10.1002/app.24246.

21. Aķ it, A.C.; Onar, N. Leaching and fastness behavior of cotton fabrics dyed with different type of dyes using sol-gel process. J. Appl. Polym. Sci. 2008, 109, 97–105. https://doi.org/10.1002/app.27284.

22. Mahltig, B.; Textor, T. Combination of silica sol and dyes on textiles. J. Sol-Gel Sci. Technol. 2006, 39, 111–118.
https://doi.org/10.1007/s10971-006-7744-9.

23. Li, F.-Y.; Xing, Y.-J.; Ding, X. Immobilization of papain on cotton fabric by sol–gel method. Enzyme Microb. Technol. 2007, 40, 1692–1697. https://doi.org/10.1016/j.enzmictec.2006.09.007.

24. Xue, C.-H.; Jia, S.-T.; Chen, H.-Z.; Wang, M. Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO 2 and surface hydrophobization. Sci. Technol. Adv. Mater. 2008, 9, 035001.
https://doi.org/10.1088/1468-6996/9/3/035001.

25. Xing, L.; Zhou, Q.; Chen, G.; Sun, G.; Xing, T. Recent developments in preparation, properties, and applications of superhydrophobic textiles. Text. Res. J. 2022, 92, 3857–3874. https://doi.org/10.1177/00405175221097716.

26. Trovato, V.; Mezzi, A.; Brucale, M.; Rosace, G.; Rosaria Plutino, M. Alizarin-functionalized organic-inorganic silane coatings for the development of wearable textile sensors. J. Colloid Interface Sci. 2022, 617, 463–477.
https://doi.org/10.1016/j.jcis.2022.03.006.

27. Trovato, V.; Teblum, E.; Kostikov, Y.; Pedrana, A.; Re, V.; Nessim, G.D.; Rosace, G. Sol-gel approach to incorporate millimeter-long carbon nanotubes into fabrics for the development of electrical-conductive textiles. Mater. Chem. Phys. 2020, 240, 122218. https://doi.org/10.1016/j.matchemphys.2019.122218.

28. Trovato, V.; Teblum, E.; Kostikov, Y.; Pedrana, A.; Re, V.; Nessim, G.D.; Rosace, G. Electrically conductive cotton fabric coatings developed by silica sol-gel precursors doped with surfactant-aided dispersion of vertically aligned carbon nanotubes fillers in organic solvent-free aqueous solution. J. Colloid Interface Sci. 2021, 586, 120–134.
https://doi.org/10.1016/j.jcis.2020.10.076.

29. Libertino, S.; Plutino, M.R.; Rosace, G. Design and development of wearable sensing nanomaterials for smart textiles. AIP Conf. Proc. 2018, 1990, 020016.

30. Colleoni, C.; Massafra, M.R.; Rosace, G. Photocatalytic properties and optical characterization of cotton fabric coated via sol–gel with non-crystalline TiO2 modified with poly(ethylene glycol). Surf. Coatings Technol. 2012, 207, 79–88. https://doi.org/10.1016/j.surfcoat.2012.06.003.

31. Bhosale, R.R.; Shende, R.V.; Puszynski, J.A. Thermochemical water-splitting for H2 generation using sol-gel derived Mn-ferrite in a packed bed reactor. Int. J. Hydrog. Energy 2012, 37, 2924–2934.
https://doi.org/10.1016/j.ijhydene.2011.03.010.

32. Yin, Y.; Wang, C. Organic–inorganic hybrid silica film coated for improving resistance to capsicum oil on natural substances through sol–gel route. J. Sol-Gel Sci. Technol. 2012, 64, 743–749. https://doi.org/10.1007/s10971-012-2911-7.

33. Vasiljević, J.; Tomšič, B.; Jerman, I.; Simončič, B. Organofunkcionalni trialkoksisilanski prekurzorji sol-gel za kemijsko modifikacijo tekstilnih vlaken. Tekstilec 2017, 60, 198–213. https://doi.org/10.14502/Tekstilec2017.60.198-213.

34. Sfameni, S.; Del Tedesco, A.; Rando, G.; Truant, F.; Visco, A.; Plutino, M.R. Waterborne Eco-Sustainable Sol–Gel Coatings Based on Phytic Acid Intercalated Graphene Oxide for Corrosion Protection of Metallic Surfaces. Int. J. Mol. Sci. 2022, 23, 198–213.

35. Abu Bakar, N.H.; Yusup, H.M.; Ismail, W.N.W. ; Zulkifli, N.F. Sol-Gel Finishing for Protective Fabrics. Biointerface Res. Appl. Chem. 2022, 13, 283. https://doi.org/10.33263/BRIAC133.283.

36. Periyasamy, A.P.; Venkataraman, M.; Kremenakova, D.; Militky, J.; Zhou, Y. Progress in Sol-Gel Technology for the Coatings of Fabrics. Materials 2020, 13, 1838. https://doi.org/10.3390/ma13081838.

37. Krzak, J.; Szczurek, A.; Babiarczuk, B.; Gąsiorek, J.; Borak, B. Sol–gel surface functionalization regardless of form and type of substrate. In Handbook of Nanomaterials for Manufacturing Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 111–147.

38. Plutino, M.R.; Colleoni, C.; Donelli, I.; Freddi, G.; Guido, E.; Maschi, O.; Mezzi, A.; Rosace, G. Sol-gel 3-
glycidoxypropyltriethoxysilane finishing on different fabrics: The role of precursor concentration and catalyst on the textile performances and cytotoxic activity. J. Colloid Interface Sci. 2017, 506, 504–517. https://doi.org/10.1016/j.jcis.2017.07.048.

39. Mohammed, M.K.A. Sol-gel synthesis of Au-doped TiO2 supported SWCNT nanohybrid with visible-light-driven photocatalytic for high degradation performance toward methylene blue dye. Optik 2020, 223, 165607. https://doi.org/10.1016/j.ijleo.2020.165607.

40. Ramesan, M.T.; Varghese, M.; P., J.; Periyat, P. Silver-Doped Zinc Oxide as a Nanofiller for Development of Poly(vinylalcohol)/Poly(vinyl pyrrolidone) Blend Nanocomposites. Adv. Polym. Technol. 2018, 37, 137–143.
https://doi.org/10.1002/adv.21650.

41. Sivasamy, R.; Venugopal, P.; Mosquera, E. Synthesis of Gd2O3/CdO composite by sol-gel method: Structural, morphological, optical, electrochemical and magnetic studies. Vacuum 2020, 175, 109255.
https://doi.org/10.1016/j.vacuum.2020.109255.

42. Rando, G.; Sfameni, S.; Plutino, M.R. Development of Functional Hybrid Polymers and Gel Materials for Sustainable Membrane-Based Water Treatment Technology: How to Combine Greener and Cleaner Approaches. Gels 2023, 9, 9. https://doi.org/10.3390/gels9010009

43. Anand, S.; Pauline, S.; Prabagar, C.J. Zr doped Barium hexaferrite nanoplatelets and RGO fillers embedded Polyvinylidenefluoride composite films for electromagnetic interference shielding applications. Polym. Test. 2020, 86, 106504. https://doi.org/10.1016/j.polymertesting.2020.106504.

44. Akbarzadeh, S.; Sopchenski Santos, L.; Vitry, V.; Paint, Y.; Olivier, M.-G. Improvement of the corrosion performance of AA2024 alloy by a duplex PEO/clay modified sol-gel nanocomposite coating. Surf. Coatings Technol. 2022, 434, 128168. https://doi.org/10.1016/j.surfcoat.2022.128168.

45. Serra, A.; Ramis, X.; Fernández-Francos, X. Epoxy Sol-Gel Hybrid Thermosets. Coatings 2016, 6, 8. https://doi.org/10.3390/coatings6010008.

46. Schubert, U.; Huesing, N.; Lorenz, A. Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides. Chem. Mater. 1995, 7, 2010–2027. https://doi.org/10.1021/cm00059a007.

47. Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005, 15, e3592. https://doi.org/10.1039/b509097k.

48. Boury, B.; Corriu, R.J.P. Auto-organisation of hybrid organic–inorganic materials prepared by sol–gel chemistry. Chem. Commun. 2002, 8, 795–802. https://doi.org/10.1039/b109040m.

49. Schmidt, H. New type of non-crystalline solids between inorganic and organic materials. J. Non. Cryst. Solids 1985, 73, 681–691. https://doi.org/10.1016/0022-3093(85)90388-6.

50. Sanchez, C.; Rozes, L.; Ribot, F.; Laberty-Robert, C.; Grosso, D.; Sassoye, C.; Boissiere, C.; Nicole, L. “Chimie douce”: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chim. 2010, 13, 3–39. https://doi.org/10.1016/j.crci.2009.06.001.

51. Ismail, W.N.W. Sol–gel technology for innovative fabric finishing—A Review. J. Sol-Gel Sci. Technol. 2016, 78, 698–707. https://doi.org/10.1007/s10971-016-4027-y.

52. Ielo, I.; Giacobello, F.; Sfameni, S.; Rando, G.; Galletta, M.; Trovato, V.; Rosace, G.; Plutino, M.R. Nanostructured Surface Finishing and Coatings: Functional Properties and Applications. Materials 2021, 14, 2733.
https://doi.org/10.3390/ma14112733.

53. Brinker, C.J.; Scherer, G.W. Sol–Gel Science: The Physics and Chemistry of Sol–Gel-Processing; A.P. Inc.: Boston, MA, USA, 1990.

54. Chemistry, Spectroscopy and Applications of Sol–Gel Glasses, Monograph Series Structure and Bonding; Reisfeld, R., Jorgenson, C.K., Eds.; Springer: Berlin, Germany, 1992.

55. Thim, G.P.; Oliveira, M.A.; Oliveira, E.D.; Melo, F.C. Sol–gel silica film preparation from aqueous solutions for corrosion protection. J. Non. Cryst. Solids 2000, 273, 124–128. https://doi.org/10.1016/S0022-3093(00)00125-3.

56. Sanchez, C.; Soler-Illia, G.J.D.A.; Ribot, F.; Grosso, D. Design of functional nano-structured materials through the use of controlled hybrid organic–inorganic interfaces. Comptes Rendus Chim. 2003, 6, 1131–1151.
https://doi.org/10.1016/j.crci.2003.06.001.

57. Rando, G.; Sfameni, S.; Galletta, M.; Drommi, D.; Cappello, S.; Plutino, M.R. Functional Nanohybrids and Nanocomposites Development for the Removal of Environmental Pollutants and Bioremediation. Molecules 2022, 27, 4856.

58. Schottner, G. Hybrid Sol−Gel-Derived Polymers: Applications of Multifunctional Materials. Chem. Mater. 2001, 13, 3422–3435. https://doi.org/10.1021/cm011060m.

59. Francis, L.F. Sol-Gel Methods for Oxide Coatings. Mater. Manuf. Process. 1997, 12, 963–1015.
https://doi.org/10.1080/10426919708935200.

60. Monde, T.; Fukube, H.; Nemoto, F.; Yoko, T.; Konakahara, T. Preparation and surface properties of silica-gel coating films containing branched-polyfluoroalkylsilane. J. Non. Cryst. Solids 1999, 246, 54–64.
https://doi.org/10.1016/S0022-3093(99)00003-4.

61. Haas, K.-H.; Amberg-Schwab, S.; Rose, K.; Schottner, G. Functionalized coatings based on inorganic–organic polymers (ORMOCER®s) and their combination with vapor deposited inorganic thin films. Surf. Coatings Technol. 1999, 111, 72–79. https://doi.org/10.1016/S0257-8972(98)00711-7.

62. Jung, J.-I.; Bae, J.Y.; Bae, B.-S. Characterization and mesostructure control of mesoporous fluorinated organosilicate films. J. Mater. Chem. 2004, 14, 1988–1994. https://doi.org/10.1039/b401774a.

63. Sfameni, S.; Lawnick, T.; Rando, G.; Visco, A.; Textor, T.; Plutino, M.R. Functional Silane-Based Nanohybrid Materials for the Development of Hydrophobic and Water-Based Stain Resistant Cotton Fabrics Coatings. Nanomaterials 2022, 12, 3404.

64. Mennig, M.; Schmitt, M.; Schmidt, H. Synthesis of Ag-Colloids in Sol-Gel Derived SiO2-Coatings on Glass. J. Sol-Gel Sci. Technol. 1997, 8, 1035–1042. https://doi.org/10.1007/BF02436980.

65. Prokopenko, V.B.; Gurin, V.S.; Alexeenko, A.A.; Kulikauskas, V.S.; Kovalenko, D.L. Surface segregation of transition metals in sol-gel silica films. J. Phys. D. Appl. Phys. 2000, 33, 3152–3155.
https://doi.org/10.1088/0022-3727/33/24/304.

66. Dunn, B.; Zink, J.I. Optical properties of sol–gel glasses doped with organic molecules. J. Mater. Chem. 1991, 1, 903–913. https://doi.org/10.1039/JM9910100903.

67. Reisfeld, R. Prospects of sol–gel technology towards luminescent materials. Opt. Mater. 2001, 16, 1–7.
https://doi.org/10.1016/S0925-3467(00)00052-5.

68. Trovato, V.; Sfameni, S.; Rando, G.; Rosace, G.; Libertino, S.; Ferri, A.; Plutino, M.R. A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, Perspective, and Prospective. Molecules 2022, 27, 5709.

69. Schmidt, H. Nanoparticles by chemical synthesis, processing to materials and innovative applications. Appl. Organomet. Chem. 2001, 15, 331–343. https://doi.org/10.1002/aoc.169.

70. Böhmer, M.R.; Keursten, T.A.P.M. Incorporation of pigments in TEOS derived matrices. J. Sol-Gel Sci. Technol. 2000, 19, 361–364. https://doi.org/10.1023/A:1008766506663.

71. Carturan, G.; Campostrini, R.; Diré, S.; Scardi, V.; De Alteriis, E. Inorganic gels for immobilization of biocatalysts: Inclusion of invertase-active whole cells of yeast (saccharomyces cerevisiae) into thin layers of SiO2 gel deposited on glass sheets. J. Mol. Catal. 1989, 57, L13–L16. https://doi.org/10.1016/0304-5102(89)80121-X.

72. Livage, J.; Coradin, T.; Roux, C. Encapsulation of biomolecules in silica gels. J. Phys. Condens. Matter 2001, 13, R673–R691. https://doi.org/10.1088/0953-8984/13/33/202.

73. Puoci, F.; Saturnino, C.; Trovato, V.; Iacopetta, D.; Piperopoulos, E.; Triolo, C.; Bonomo, M.G.; Drommi, D.; Parisi, O.I.; Milone, C.; et al. Sol–Gel Treatment of Textiles for the Entrapping of an Antioxidant/Anti-Inflammatory Molecule: Functional Coating Morphological Characterization and Drug Release Evaluation. Appl. Sci. 2020, 10, 2287. https://doi.org/10.3390/app10072287.

74. Novak, B.M. Hybrid Nanocomposite Materials?between inorganic glasses and organic polymers. Adv. Mater. 1993, 5, 422–433. https://doi.org/10.1002/adma.19930050603.

75. Pomogailo, A.D. Hybrid polymer-inorganic nanocomposites. Russ. Chem. Rev. 2000, 69, 53–80.
https://doi.org/10.1070/RC2000v069n01ABEH000506.

76. Böttcher, H.; Soltmann, U.; Mertig, M.; Pompe, W. Biocers: Ceramics with incorporated microorganisms for biocatalytic, biosorptive and functional materials development. J. Mater. Chem. 2004, 14, 2176–2188.
https://doi.org/10.1039/B401724B.

77. Böttcher, H.; Kallies, K.-H.; Haufe, H. Model investigations of controlled release of bioactive compounds from thin metal oxide layers. J. Sol-Gel Sci. Technol. 1997, 8, 651–654. https://doi.org/10.1007/BF02436917.

78. Wei, Y.; Xu, J.; Dong, H.; Dong, J.H.; Qiu, K.; Jansen-Varnum, S.A. Preparation and Physisorption Characterization of D-Glucose-Templated Mesoporous Silica Sol−Gel Materials. Chem. Mater. 1999, 11, 2023–2029.
https://doi.org/10.1021/cm981004u.

79. Ibrahim, N.A.; Eid, B.M.; Sharaf, S.M. Functional Finishes for Cotton-Based Textiles: Current Situation and Future Trends. In Textiles and Clothing: Environmental Concerns and Solutions; Shabbir, M., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2019; pp. 131–190.

80. Mahltig, B.; Haufe, H.; Böttcher, H. Functionalisation of textiles by inorganic sol–gel coatings. J. Mater. Chem. 2005, 15, 4385–4398. https://doi.org/10.1039/b505177k.

81. Attia, N.F.; Mohamed, A.; Hussein, A.; El-Demerdash, A.-G.M.; Kandil, S.H. Bio-inspired one-dimensional based textile fabric coating for integrating high flame retardancy, antibacterial, toxic gases suppression, antiviral and reinforcement properties. Polym. Degrad. Stab. 2022, 205, 110152. https://doi.org/10.1016/j.polymdegradstab.2022.110152.

82. Attia, N.F.; Osama, R.; Elashery, S.E.A.; Kalam, A.; Al-Sehemi, A.G.; Algarni, H. Recent Advances of Sustainable Textile Fabric Coatings for UV Protection Properties. Coatings 2022, 12, 1597.
https://doi.org/10.3390/coatings12101597.

83. Chen, F.; Zhai, L.; Yang, H.; Zhao, S.; Wang, Z.; Gao, C.; Zhou, J.; Liu, X.; Yu, Z.; Qin, Y.; et al. Unparalleled Armour for Aramid Fiber with Excellent UV Resistance in Extreme Environment. Adv. Sci. 2021, 8, 2004171.
https://doi.org/10.1002/advs.202004171.

84. Sui, Z.; Guo, Z.; Li, Y.; Zhang, Q.; Zu, B.; Zhao, X. Study on preparation and performance of multifunctional linen fabric finishing agent. Text. Res. J. 2022, 93. https://doi.org/10.1177/00405175221134974.

85. Arik, B.; Karaman Atmaca, O.D. The effects of sol–gel coatings doped with zinc salts and zinc oxide nanopowders on multifunctional performance of linen fabric. Cellulose 2020, 27, 8385–8403.
https://doi.org/10.1007/s10570-020-03322-3.

86. Abo El-Ola, S.M.; El-Bendary, M.A.; Mohamed, N.H.; Kotb, R.M. Substantial Functional Finishing and Transfer Printing of Polyester Fabric Using Zinc Oxide/Polyurethane Nanocomposite. Fibers Polym. 2022, 23, 2798–2808.
https://doi.org/10.1007/s12221-022-4257-2.

87. Prilla, K.A.V.; Jacinto, J.M.; Ricardo, L.J.O.; Box, J.T.S.; Lim, A.B.C.; Francisco, E.F.; De Vera, G.I.N.; Yaya, J.A.T.; Natividad, V.V.M.; Awi, E.N.; et al. Flame retardant and uv-protective cotton fabrics functionalized with copper (II) oxide nanoparticles. 2020, 7, 11–16.

88. Maghimaa, M.; Alharbi, S.A. Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity. J. Photochem. Photobiol. B Biol. 2020, 204, 111806. https://doi.org/10.1016/j.jphotobiol.2020.111806.

89. Abramova, A.V.; Abramov, V.O.; Bayazitov, V.M.; Voitov, Y.; Straumal, E.A.; Lermontov, S.A.; Cherdyntseva, T.A.; Braeutigam, P.; Weiße, M.; Günther, K. A sol-gel method for applying nanosized antibacterial particles to the surface of textile materials in an ultrasonic field. Ultrason. Sonochem. 2020, 60, 104788.
https://doi.org/10.1016/j.ultsonch.2019.104788.

90. Olczyk, J.; Sójka-Ledakowicz, J.; Walawska, A.; Antecka, A.; Siwińska-Ciesielczyk, K.; Zdarta, J.; Jesionowski, T. Antimicrobial Activity and Barrier Properties against UV Radiation of Alkaline and Enzymatically Treated Linen
Woven Fabrics Coated with Inorganic Hybrid Material. Molecules 2020, 25, 5701. https://doi.org/10.3390/molecules25235701.

91. Attia, N.F.; Ebissy, A.A.E.; Morsy, M.S.; Sadak, R.A.; Gamal, H. Influence of Textile Fabrics Structures on Thermal, UV Shielding, and Mechanical Properties of Textile Fabrics Coated with Sustainable Coating. J. Nat. Fibers 2021, 18, 2189–2196. https://doi.org/10.1080/15440478.2020.1724233.

92. Sezgin Bozok, S.; Ogulata, R.T. Applying Softener Doped Silica Coating to Cotton Denim Fabrics. J. Nat. Fibers 2022, 19, 7566–7578. https://doi.org/10.1080/15440478.2021.1952138.

93. Babaahmadi, V.; Abuzade, R.A.; Montazer, M. Enhanced ultraviolet-protective textiles based on reduced graphene oxide-silver nanocomposites on polyethylene terephthalate using ultrasonic-assisted in-situ thermal synthesis. J. Appl. Polym. Sci. 2022, 139, 52196. https://doi.org/10.1002/app.52196.

94. Porrawatkul, P.; Pimsen, R.; Kuyyogsuy, A.; Teppaya, N.; Noypha, A.; Chanthai, S.; Nuengmatcha, P. Microwave-assisted synthesis of Ag/ZnO nanoparticles using Averrhoa carambola fruit extract as the reducing agent and their application in cotton fabrics with antibacterial and UV-protection properties. RSC Adv. 2022, 12, 15008–15019.
https://doi.org/10.1039/D2RA01636B.

95. Filipič, J.; Glažar, D.; Jerebic, Š.; Kenda, D.; Modic, A.; Roškar, B.; Vrhovski, I.; Štular, D.; Golja, B.; Smolej, S.; et al. Tailoring of Antibacterial and UV-protective Cotton Fabric by an in situ Synthesis of Silver Particles in the Presence of a Sol-gel Matrix and Sumac Leaf Extract. Tekstilec 2020, 63, 4–13. https://doi.org/10.14502/Tekstilec2020.63.4-13.

96. Noorian, S.A.; Hemmatinejad, N.; Navarro, J.A.R. Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. Int. J. Biol. Macromol. 2020, 154, 1215–1226. https://doi.org/10.1016/j.ijbiomac.2019.10.276.

97. Liang, Z.; Zhou, Z.; Li, J.; Zhang, S.; Dong, B.; Zhao, L.; Wu, C.; Yang, H.; Chen, F.; Wang, S. Multi-functional silk fibers/fabrics with a negligible impact on comfortable and wearability properties for fiber bulk. Chem. Eng. J. 2021, 415, 128980. https://doi.org/10.1016/j.cej.2021.128980.

98. Zhai, L.; Huang, Z.; Luo, Y.; Yang, H.; Xing, T.; He, A.; Yu, Z.; Liu, J.; Zhang, X.; Xu, W.; et al. Decorating aramid fibers with chemically-bonded amorphous TiO2 for improving UV resistance in the simulated extreme environment.
Chem. Eng. J. 2022, 440, 135724. https://doi.org/10.1016/j.cej.2022.135724.

99. Liu, H.-K. Investigation on the pressure infiltration of sol-gel processed textile ceramic matrix composites. J. Mater. Sci. 1996, 31, 5093–5099. https://doi.org/10.1007/BF00355910.

100. Brzeziński, S.; Kowalczyk, D.; Borak, B.; Jasiorski, M.; Tracz, A. Applying the sol-gel method to the deposition of nanocoats on textiles to improve their abrasion resistance. J. Appl. Polym. Sci. 2012, 125, 3058–3067.
https://doi.org/10.1002/app.36353.

101. Liu, J.; Berg, J.C. An aqueous sol–gel route to prepare organic–inorganic hybrid materials. J. Mater. Chem. 2007, 17, 4430–4435. https://doi.org/10.1039/b709078a.

102. Xiao, X.; Chen, F.; Wei, Q.; Wu, N. Surface modification of polyester nonwoven fabrics by Al2O3 sol–gel coating. J. Coatings Technol. Res. 2009, 6, 537–541. https://doi.org/10.1007/s11998-008-9157-x.

103. Colleoni, C.; Donelli, I.; Freddi, G.; Guido, E.; Migani, V.; Rosace, G. A novel sol-gel multi-layer approach for cotton fabric finishing by tetraethoxysilane precursor. Surf. Coatings Technol. 2013, 235, 192–203.
https://doi.org/10.1016/j.surfcoat.2013.07.033.

104. Rosu, C.; Lin, H.; Jiang, L.; Breedveld, V.; Hess, D.W. Sustainable and long-time ‘rejuvenation’ of biomimetic water-repellent silica coating on polyester fabrics induced by rough mechanical abrasion. J. Colloid Interface Sci. 2018, 516, 202–214. https://doi.org/10.1016/j.jcis.2018.01.055.

105. Schramm, C.; Binder, W.H.; Tessadri, R. Durable Press Finishing of Cotton Fabric with 1,2,3,4-Butanetetracarboxylic Acid and TEOS/GPTMS. J. Sol-Gel Sci. Technol. 2004, 29, 155–165.
https://doi.org/10.1023/B:JSST.0000023850.97771.7d.

106. Trovato, V.; Rosace, G.; Colleoni, C.; Sfameni, S.; Migani, V.; Plutino, M.R. Sol-gel based coatings for the protection of cultural heritage textiles. IOP Conf. Ser. Mater. Sci. Eng. 2020, 777, 012007. https://doi.org/10.1088/1757-899X/777/1/012007.

107. Textor, T.; Bahners, T.; Schollmyer, E. Modern Approaches for Intelligent Surface Modification. J. Ind. Text. 2003, 32, 279–289. https://doi.org/10.1177/1528083703034752.

108. Xu, T.; Xie, C.S. Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Prog. Org. Coatings 2003, 46, 297–301. https://doi.org/10.1016/S0300-9440(03)00016-X.

109. Vigneshwaran, N.; Kumar, S.; Kathe, A.A.; Varadarajan, P.V.; Prasad, V. Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology 2006, 17, 5087–5095. https://doi.org/10.1088/0957-4484/17/20/008.

110. Li, F.; Xing, Y.; Ding, X. Silica xerogel coating on the surface of natural and synthetic fabrics. Surf. Coatings Technol. 2008, 202, 4721–4727. https://doi.org/10.1016/j.surfcoat.2008.04.048.

111. Sequeira, S.; Evtuguin, D.V.; Portugal, I.; Esculcas, A.P. Synthesis and characterisation of cellulose/silica hybrids obtained by heteropoly acid catalysed sol–gel process. Mater. Sci. Eng. C 2007, 27, 172–179.
https://doi.org/10.1016/j.msec.2006.04.007.

112. GUGUMUS, F. Developments in the UV-Stabilisation of Polymers; Applied Science Publishers: London, UK, 1979.

113. Biswa, R. Das UV Radiation Protective Clothing. Open Text. J. 2010, 3, 14–21.

114. Osterwalder, U.; Schlenker, W.; Rohwer, H.; Martin, E.; Schuh, S. Facts and Ficton on Ultraviolet Protection by Clothing. Radiat. Prot. Dosim. 2000, 91, 255–259. https://doi.org/10.1093/oxfordjournals.rpd.a033213.

115. Wang, R.H.; Xin, J.H.; Tao, X.M. UV-Blocking Property of Dumbbell-Shaped ZnO Crystallites on Cotton Fabrics. Inorg. Chem. 2005, 44, 3926–3930. https://doi.org/10.1021/ic0503176.

116. Daoud, W.A.; Xin, J.H. Low Temperature Sol-Gel Processed Photocatalytic Titania Coating. J. Sol-Gel Sci. Technol. 2004, 29, 25–29. https://doi.org/10.1023/B:JSST.0000016134.19752.b4.

117. Xin, J.H.; Daoud, W.A.; Kong, Y.Y. A New Approach to UV-Blocking Treatment for Cotton Fabrics. Text. Res. J. 2004, 74, 97–100. https://doi.org/10.1177/004051750407400202.

118. Abidi, N.; Hequet, E.; Tarimala, S.; Dai, L.L. Cotton fabric surface modification for improved UV radiation protection using sol–gel process. J. Appl. Polym. Sci. 2007, 104, 111–117. https://doi.org/10.1002/app.24572.

119. Onar, N.; Ebeoglugil, M.F.; Kayatekin, I.; Celik, E. Low-temperature, sol–gel-synthesized, silver-doped titanium oxide coatings to improve ultraviolet-blocking properties for cotton fabrics. J. Appl. Polym. Sci. 2007, 106, 514–525.
https://doi.org/10.1002/app.26495.

120. Xing, Y.; Ding, X. UV photo-stabilization of tetrabutyl titanate for aramid fibers via sol–gel surface modification. J. Appl. Polym. Sci. 2007, 103, 3113–3119. https://doi.org/10.1002/app.25463.

121. Dong, Y.; Bai, Z.; Zhang, L.; Liu, R.; Zhu, T. Finishing of cotton fabrics with aqueous nano-titanium dioxide dispersion and the decomposition of gaseous ammonia by ultraviolet irradiation. J. Appl. Polym. Sci. 2006, 99, 286–291. https://doi.org/10.1002/app.22476.

122. Wang, C.-C.; Chen, C.-C. Physical properties of the crosslinked cellulose catalyzed with nanotitanium dioxide under UV irradiation and electronic field. Appl. Catal. A Gen. 2005, 293, 171–179.
https://doi.org/10.1016/j.apcata.2005.07.007.

123. Park, Y.R.; Kim, K.J. Structural and optical properties of rutile and anatase TiO2 thin films: Effects of Co doping. Thin Solid Films 2005, 484, 34–38. https://doi.org/10.1016/j.tsf.2005.01.039.

124. Sawada, K.; Sugimoto, M.; Ueda, M. Chan Hun Park Hydrophilic Treatment of Polyester Surfaces Using TiO2 Photocatalytic Reactions. Text. Res. J. 2003, 73, 819–822. https://doi.org/10.1177/004051750307300912.

125. Han, K.; Yu, M. Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation. J. Appl. Polym. Sci. 2006, 100, 1588–1593. https://doi.org/10.1002/app.23312.

126. Pan, Z.W.; Dai, Z.R.; Wang, Z.L. Nanobelts of Semiconducting Oxides. Science 2001, 291, 1947–1949.
https://doi.org/10.1126/science.1058120.

127. Polymer–Clay Nanocomposites; Pinnavaia, T.J., Beall, G.W., Eds.; John Wiley: Hoboken, NJ, USA, 2000.

128. Behnajady, M.; Modirshahla, N.; Hamzavi, R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 2006, 133, 226–232. https://doi.org/10.1016/j.jhazmat.2005.10.022.

129. Ahmed, N.S.E.; El-Shishtawy, R.M. The use of new technologies in coloration of textile fibers. J. Mater. Sci. 2010, 45, 1143–1153. https://doi.org/10.1007/s10853-009-4111-6.

130. Rilda, Y.; Fadhli, F.; Syukri, S.; Alif, A.; Aziz, H.; Chandren, S.; Nur, H. Self-cleaning TiO2-SiO2 clusters on cotton textile prepared by dip-spin coating process. J. Teknol. 2016, 78. https://doi.org/10.11113/jt.v78.9165.

131. Wang, L.; Shen, Y.; Xu, L.; Cai, Z.; Zhang, H. Thermal crystallization of low-temperature prepared anatase nano-TiO2 and multifunctional finishing of cotton fabrics. J. Text. Inst. 2016, 107, 651–662.
https://doi.org/10.1080/00405000.2015.1054227.

132. Shaban, M.; Abdallah, S.; Khalek, A.A. Characterization and photocatalytic properties of cotton fibers modified with ZnO nanoparticles using sol–gel spin coating technique. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 277–283.
https://doi.org/10.1016/j.bjbas.2016.08.003.

133. Noorian, S.A.; Hemmatinejad, N.; Bashari, A. One-Pot Synthesis of Cu 2 O/ZnO Nanoparticles at Present of Folic Acid to Improve UV-Protective Effect of Cotton Fabrics. Photochem. Photobiol. 2015, 91, 510–517. https://doi.org/10.1111/php.12420.

134. Mills, A.; Lee, S.-K. A web-based overview of semiconductor photochemistry-based current commercial applications. J. Photochem. Photobiol. A Chem. 2002, 152, 233–247. https://doi.org/10.1016/S1010-6030(02)00243-5.

135. Langlet, M.; Kim, A.; Audier, M.; Herrmann, J.M. Sol-gel preparation of photocatalytic TiO2 films on polymer substrates. J. Sol-Gel Sci. Technol. 2002, 25, 223–234. https://doi.org/10.1023/A:1020259911650.

136. Kasprzyk-Hordern, B.; Ziółek, M.; Nawrocki, J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B Environ. 2003, 46, 639–669. https://doi.org/10.1016/S0926-3373(03)00326-6.

137. Karkmaz, M.; Puzenat, E.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation of the alimentary azo dye amaranth. Appl. Catal. B Environ. 2004, 51, 183–194. https://doi.org/10.1016/j.apcatb.2004.02.009.

138. Lo, P.-H.; Kumar, S.A.; Chen, S.-M. Amperometric determination of H2O2 at nano-TiO2/DNA/thionin nanocomposite modified electrode. Colloids Surf. B Biointerfaces 2008, 66, 266–273.
https://doi.org/10.1016/j.colsurfb.2008.07.003.

139. Weibel, A.; Bouchet, R.; Knauth, P. Electrical properties and defect chemistry of anatase (TiO2). Solid State Ion. 2006, 177, 229–236. https://doi.org/10.1016/j.ssi.2005.11.002.

140. Verran, J.; Sandoval, G.; Allen, N.S.; Edge, M.; Stratton, J. Variables affecting the antibacterial properties of nano and pigmentary titania particles in suspension. Dye. Pigment. 2007, 73, 298–304. https://doi.org/10.1016/j.dyepig.2006.01.003.

141. Norris, J.R.; Meisel, D. Photochemical Energy Conversion; Elsevier: New York, NY, USA, 1989.

142. Gratzel, M. Heterogenous Photochemical Electron Transfer; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781351081658.

143. Kontos, A.I.; Arabatzis, I.M.; Tsoukleris, D.S.; Kontos, A.G.; Bernard, M.C.; Petrakis, D.E.; Falaras, P. Efficient photocatalysts by hydrothermal treatment of TiO2. Catal. Today 2005, 101, 275–281.
https://doi.org/10.1016/j.cattod.2005.03.003.

144. Šegota, S.; Ćurković, L.; Ljubas, D.; Svetličić, V.; Houra, I.F.; Tomašić, N. Synthesis, characterization and photocatalytic properties of sol-gel TiO2 films. Ceram. Int. 2011, 37, 1153–1160. https://doi.org/10.1016/j.ceramint.2010.10.034.

145. Kho, Y.K.; Iwase, A.; Teoh, W.Y.; Mädler, L.; Kudo, A.; Amal, R. Photocatalytic H 2 Evolution over TiO 2 Nanoparticles. The Synergistic Effect of Anatase and Rutile. J. Phys. Chem. C 2010, 114, 2821–2829. https://doi.org/10.1021/jp910810r.

146. Randorn, C.; Irvine, J.T.S.; Robertson, P. Synthesis of visible-light-activated yellow amorphous TiO2 photocatalyst. Int. J. Photoenergy 2008, 2008, 426872. https://doi.org/10.1155/2008/426872.

147. Huang, J.; Li, Y.; Zhao, G.; Cai, X. Photocatalytic degradation characteristic of amorphous TiO2-W thin films deposited by magnetron sputtering. Trans. Nonferrous Met. Soc. China 2006, 16, s280–s284. https://doi.org/10.1016/S1003-6326(06)60191-X.

148. Onar, N.; Aksit, A.C.; Sen, Y.; Mutlu, M. Antimicrobial, UV-protective and self-cleaning properties of cotton fabrics coated by dip-coating and solvothermal coating methods. Fibers Polym. 2011, 12, 461–470. https://doi.org/10.1007/s12221-011-0461-1.

149. Fulekar, M.H. Environmental Biotechnology; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9780429065040.

150. Yuranova, T.; Mosteo, R.; Bandara, J.; Laub, D.; Kiwi, J. Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. J. Mol. Catal. A Chem. 2006, 244, 160–167. https://doi.org/10.1016/j.molcata.2005.08.059.

151. Bu, S.; Jin, Z.; Liu, X.; Yang, L.; Cheng, Z. Fabrication of TiO2 porous thin films using peg templates and chemistry of the process. Mater. Chem. Phys. 2004, 88, 273–279. https://doi.org/10.1016/j.matchemphys.2004.03.033.

152. Zhang, W.J.; Yang, B.; Bai, J.W. Photocatalytic Activity of TiO2/Ti Film Prepared by Sol-Gel Method on Methyl Orange Degradation. Adv. Mater. Res. 2011, 214, 65–69. https://doi.org/10.4028/www.scientific.net/AMR.214.65.

153. Boiteux, G.; Boullanger, C.; Cassagnau, P.; Fulchiron, R.; Seytre, G. Influence of Morphology on PTC in Conducting Polypropylene-Silver Composites. Macromol. Symp. 2006, 233, 246–253. https://doi.org/10.1002/masy.200690024.

154. Lee, H.-H.; Chou, K.-S.; Shih, Z.-W. Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives. Int. J. Adhes. Adhes. 2005, 25, 437–441. https://doi.org/10.1016/j.ijadhadh.2004.11.008.

155. Xu, M.; Feng, J.Q.; Cao, X.L. Electrical properties of nano-silver/polyacrylamide/ethylene vinyl acetate composite. J. Shanghai Univ. 2008, 12, 85–90. https://doi.org/10.1007/s11741-008-0117-1.

156. Gorenšek, M.; Recelj, P. Nanosilver Functionalized Cotton Fabric. Text. Res. J. 2007, 77, 138–141. https://doi.org/10.1177/0040517507076329.

157. Jiang, S.; Newton, E.; Yuen, C.-W.M.; Kan, C.-W.; Jiang, S.-X.K. Application of Chemical Silver Plating on Polyester and Cotton Blended Fabric. Text. Res. J. 2007, 77, 85–91. https://doi.org/10.1177/0040517507078739.

158. Schartel, B.; Pötschke, P.; Knoll, U.; Abdel-Goad, M. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur. Polym. J. 2005, 41, 1061–1070. https://doi.org/10.1016/j.eurpolymj.2004.11.023.

159. Xue, P.; Park, K.H.; Tao, X.M.; Chen, W.; Cheng, X.Y. Electrically conductive yarns based on PVA/carbon nanotubes. Compos. Struct. 2007, 78, 271–277. https://doi.org/10.1016/j.compstruct.2005.10.016.

160. Mondal, S.; Hu, J.L. A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating. J. Appl. Polym. Sci. 2007, 103, 3370–3376. https://doi.org/10.1002/app.25437.

161. Kim, H.-S.; Park, B.H.; Yoon, J.-S.; Jin, H.-J. Preparation and characterization of poly[(butylene succinate)-co-(butylene adipate)]/carbon nanotube-coated silk fiber composites. Polym. Int. 2007, 56, 1035–1039. https://doi.org/10.1002/pi.2238.

162. Yen, C.-Y.; Lin, Y.-F.; Hung, C.-H.; Tseng, Y.-H.; Ma, C.-C.M.; Chang, M.-C.; Shao, H. The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO 2 nanocomposites. Nanotechnology 2008, 19, 045604. https://doi.org/10.1088/0957-4484/19/04/045604.

163. Wei, Q.; Yu, L.; Wu, N.; Hong, S. Preparation and Characterization of Copper Nanocomposite Textiles. J. Ind. Text. 2008, 37, 275–283. https://doi.org/10.1177/1528083707083794.

164. Dong, W.; Zhu, C.; Bongard, H.-J. Preparation and optical properties of UV dye DMT-doped silica films. J. Phys. Chem. Solids 2003, 64, 399–404. https://doi.org/10.1016/S0022-3697(02)00292-5.

165. Tiller, J. Selbststerilisierende Oberflächen. Nachr. Aus Der Chem. 2007, 55, 499–502. https://doi.org/10.1002/nadc.200747575.

166. Johns, K. Hygienic coatings: The next generation. Surf. Coatings Int. Part B Coatings Trans. 2003, 86, 101–110. https://doi.org/10.1007/BF02699620.

167. Ovington, L.G. Battling Bacteria in Wound Care. Home Healthc. Nurse J. Home Care Hosp. Prof. 2001, 19, 622–630. https://doi.org/10.1097/00004045-200110000-00013.

168. MacKeen, P.C.; Person, S.; Warner, S.C.; Snipes, W.; Stevens, S.E. Silver-coated nylon fiber as an antibacterial agent. Antimicrob. Agents Chemother. 1987, 31, 93–99. https://doi.org/10.1128/AAC.31.1.93.

169. Knittel, D.; Schollmeyer, E. Chitosan and its derivatives for textile finishing Part 4: Permanent finishing of cotton with ionic carbohydrates and analysis of thin layers obtained. Melliand Textilb. Int. 2002, 83, 58–61.

170. Gadre, S.Y.; Gouma, P.I. Biodoped Ceramics: Synthesis, Properties, and Applications. J. Am. Ceram. Soc. 2006, 89, 2987–3002. https://doi.org/10.1111/j.1551-2916.2006.01307.x.

171. Huang, J.; Ichinose, I.; Kunitake, T. Biomolecular Modification of Hierarchical Cellulose Fibers through Titania Nanocoating. Angew. Chemie Int. Ed. 2006, 45, 2883–2886. https://doi.org/10.1002/anie.200503867.

172. Leivo, J.; Meretoja, V.; Vippola, M.; Levänen, E.; Vallittu, P.; Mäntylä, T.A. Sol–gel derived aluminosilicate coatings on alumina as substrate for osteoblasts. Acta Biomater. 2006, 2, 659–668. https://doi.org/10.1016/j.actbio.2006.06.001.

173. Zhang, Y.; Xu, Q.; Fu, F.; Liu, X. Durable antimicrobial cotton textiles modified with inorganic nanoparticles. Cellulose 2016, 23, 2791–2808. https://doi.org/10.1007/s10570-016-1012-0.

174. Liu, Y.; Ren, X.; Liang, J. Antimicrobial modification review. BioResources 2015, 10, 1964–1985.

175. Ielo, I.; Giacobello, F.; Castellano, A.; Sfameni, S.; Rando, G.; Plutino, M.R. Development of Antibacterial and Antifouling Innovative and Eco-Sustainable Sol–Gel Based Materials: From Marine Areas Protection to Healthcare Applications. Gels 2022, 8, 26.

176. Buket, A.R.I.K.; Seventekin, N. Evaluation of Antibacterial and Structural Properties of Cotton Fabric Coated By Chitosan/Titania and Chitosan/Silica Hybrid Sol-Gel Coatings. Text. Appar. 2011, 21, 107–115.

177. Buşilă, M.; Muşat, V.; Textor, T.; Mahltig, B. Synthesis and characterization of antimicrobial textile finishing based on Ag:ZnO nanoparticles/chitosan biocomposites. RSC Adv. 2015, 5, 21562–21571. https://doi.org/10.1039/C4RA13918F.

178. Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces 2010, 79, 5–18. https://doi.org/10.1016/j.colsurfb.2010.03.029.

179. Chen, Q.; Shen, X.; Gao, H. One-step synthesis of silver-poly(4-vinylpyridine) hybrid microgels by γ-irradiation and surfactant- free emulsion polymerisation. The photoluminescence characteristics. Colloids Surf. A Physicochem. Eng. Asp. 2006, 275, 45–49. https://doi.org/10.1016/j.colsurfa.2005.09.016.

180. Dimitrov, D.S. Interactions of antibody-conjugated nanoparticles with biological surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2006, 282–283, 8–10. https://doi.org/10.1016/j.colsurfa.2005.11.001.

181. Liu, J.-K.; Yang, X.-H.; Tian, X.-G. Preparation of silver/hydroxyapatite nanocomposite spheres. Powder Technol. 2008, 184, 21–24. https://doi.org/10.1016/j.powtec.2007.07.034.

182. Chen, W.; Liu, Y.; Courtney, H.; Bettenga, M.; Agrawal, C.M.; Bumgardner, J.D.; Ong, J.L. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 2006, 27, 5512–5517. https://doi.org/10.1016/j.biomaterials.2006.07.003.

183. Magaña, S.M.; Quintana, P.; Aguilar, D.H.; Toledo, J.A.; Ángeles-Chávez, C.; Cortés, M.A.; León, L.; Freile-Pelegrín, Y.; López, T.; Sánchez, R.M.T. Antibacterial activity of montmorillonites modified with silver. J. Mol. Catal. A Chem. 2008, 281, 192–199. https://doi.org/10.1016/j.molcata.2007.10.024.

184. Esteban-Cubillo, A.; Pecharromán, C.; Aguilar, E.; Santarén, J.; Moya, J.S. Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J. Mater. Sci. 2006, 41, 5208–5212.
https://doi.org/10.1007/s10853-006-0432-x.

185. Le Pape, H.; Solano-Serena, F.; Contini, P.; Devillers, C.; Maftah, A.; Leprat, P. Evaluation of the anti-microbial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon N. Y. 2002, 40, 2947–2954. https://doi.org/10.1016/S0008-6223(02)00246-4.

186. Hu, C.H.; Xu, Z.R.; Xia, M.S. Antibacterial effect of Cu2+-exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism. Vet. Microbiol. 2005, 109, 83–88. https://doi.org/10.1016/j.vetmic.2005.04.021.

187. Kang, S.; Pinault, M.; Pfefferle, L.D.; Elimelech, M. Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 2007, 23, 8670–8673. https://doi.org/10.1021/la701067r.

188. Kang, S.; Herzberg, M.; Rodrigues, D.F.; Elimelech, M. Antibacterial Effects of Carbon Nanotubes: Size Does Matter! Langmuir 2008, 24, 6409–6413. https://doi.org/10.1021/la800951v.

189. Mahltig, B.; Fiedler, D.; Fischer, A.; Simon, P. Antimicrobial coatings on textiles–modification of sol–gel layers with organic and inorganic biocides. J. Sol-Gel Sci. Technol. 2010, 55, 269–277. https://doi.org/10.1007/s10971-010-2245-2.

190. Poli, R.; Colleoni, C.; Calvimontes, A.; Polášková, H.; Dutschk, V.; Rosace, G. Innovative sol–gel route in neutral hydroalcoholic condition to obtain antibacterial cotton finishing by zinc precursor. J. Sol-Gel Sci. Technol. 2015, 74, 151–160. https://doi.org/10.1007/s10971-014-3589-9.

191. Tarimala, S.; Kothari, N.; Abidi, N.; Hequet, E.; Fralick, J.; Dai, L.L. New approach to antibacterial treatment of cotton fabric with silver nanoparticle–doped silica using sol–gel process. J. Appl. Polym. Sci. 2006, 101, 2938–2943. https://doi.org/10.1002/app.23443.

192. Mahltig, B.; Gutmann, E.; Meyer, D.C.; Reibold, M.; Dresler, B.; Günther, K.; Faßler, D.; Böttcher, H. Solvothermal preparation of metallized titania sols for photocatalytic and antimicrobial coatings. J. Mater. Chem. 2007, 17, 2367–2374. https://doi.org/10.1039/B702519J.

193. Mahltig, B.; Fischer, A. Inorganic/organic polymer coatings for textiles to realize water repellent and antimicrobial properties-A study with respect to textile comfort. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1562–1568. https://doi.org/10.1002/polb.22051.

194. Rivero, P.J.; Goicoechea, J. Sol-Gel Technology for Antimicrobial Textiles; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081005859.

195. Wang, S.; Hou, W.; Wei, L.; Jia, H.; Liu, X.; Xu, B. Antibacterial activity of nano-SiO2 antibacterial agent grafted on wool surface. Surf. Coatings Technol. 2007, 202, 460–465. https://doi.org/10.1016/j.surfcoat.2007.06.012.

196. Mahltig, B.; Textor, T. Silver containing sol-gel coatings on polyamide fabrics as antimicrobial finish-description of a technical application process for wash permanent antimicrobial effect. Fibers Polym. 2010, 11, 1152–1158. https://doi.org/10.1007/s12221-010-1152-z.

197. Li, Q.; Chen, S.-L.; Jiang, W.-C. Durability of nano ZnO antibacterial cotton fabric to sweat. J. Appl. Polym. Sci. 2007, 103, 412–416. https://doi.org/10.1002/app.24866.

198. Rios, P.F.; Dodiuk, H.; Kenig, S.; McCarthy, S.; Dotan, A. Durable ultra-hydrophobic surfaces for self-cleaning applications. Polym. Adv. Technol. 2008, 19, 1684–1691. https://doi.org/10.1002/pat.1208.

199. Ikezawa, S.; Homyara, H.; Kubota, T.; Suzuki, R.; Koh, S.; Mutuga, F.; Yoshioka, T.; Nishiwaki, A.; Ninomiya, Y.; Takahashi, M.; et al. Applications of TiO2 film for environmental purification deposited by controlled electron beam-excited plasma. Thin Solid Films 2001, 386, 173–176. https://doi.org/10.1016/S0040-6090(00)01638-2.

200. Mahmoodi, N.M.; Arami, M.; Limaee, N.Y.; Tabrizi, N.S. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J. Colloid Interface Sci. 2006, 295, 159–164. https://doi.org/10.1016/j.jcis.2005.08.007.

201. Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-Light-Driven N−F−Codoped TiO 2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization. Chem. Mater. 2005, 17, 2588–2595. https://doi.org/10.1021/cm049100k.

202. Cermenati, L.; Pichat, P.; Guillard, C.; Albini, A. Probing the TiO2 Photocatalytic Mechanisms in Water Purification by Use of Quinoline, Photo-Fenton Generated OH• Radicals and Superoxide Dismutase. J. Phys. Chem. B 1997, 101, 2650–2658. https://doi.org/10.1021/jp962700p.

203. Nazari, A.; Montazer, M.; Rashidi, A.; Yazdanshenas, M.; Anary-Abbasinejad, M. Nano TiO2 photo-catalyst and sodium hypophosphite for cross-linking cotton with poly carboxylic acids under UV and high temperature. Appl. Catal. A Gen. 2009, 371, 10–16. https://doi.org/10.1016/j.apcata.2009.08.029.

204. Keshmiri, M.; Mohseni, M.; Troczynski, T. Development of novel TiO2 sol–gel-derived composite and its photocatalytic activities for trichloroethylene oxidation. Appl. Catal. B Environ. 2004, 53, 209–219. https://doi.org/10.1016/j.apcatb.2004.05.016.

205. Fu, G.; Vary, P.S.; Lin, C.-T. Anatase TiO 2 Nanocomposites for Antimicrobial Coatings. J. Phys. Chem. B 2005, 109, 8889–8898. https://doi.org/10.1021/jp0502196.

206. Chang, C.-C.; Lin, C.-K.; Chan, C.-C.; Hsu, C.-S.; Chen, C.-Y. Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions. Thin Solid Films 2006, 494, 274–278. https://doi.org/10.1016/j.tsf.2005.08.152.

207. Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002.

208. Yeo, S.Y.; Lee, H.J.; Jeong, S.H. Preparation of nanocomposite fibers for permanent antibacterial effect. J. Mater. Sci. 2003, 38, 2143–2147. https://doi.org/10.1023/A:1023767828656.

209. Ayyad, O.; Muñoz-Rojas, D.; Oró-Solé, J.; Gómez-Romero, P. From silver nanoparticles to nanostructures through matrix chemistry. J. Nanopart. Res. 2010, 12, 337–345. https://doi.org/10.1007/s11051-009-9620-3.

210. Yu, D.-G. Formation of colloidal silver nanoparticles stabilized by Na+–poly(γ-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids Surf. B Biointerfaces 2007, 59, 171–178. https://doi.org/10.1016/j.colsurfb.2007.05.007.

211. Nersisyan, H.H.; Lee, J.H.; Son, H.T.; Won, C.W.; Maeng, D.Y. A new and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion. Mater. Res. Bull. 2003, 38, 949–956. https://doi.org/10.1016/S0025-5408(03)00078-3.

212. Courrol, L.C.; de Oliveira Silva, F.R.; Gomes, L. A simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf. A Physicochem. Eng. Asp. 2007, 305, 54–57. https://doi.org/10.1016/j.colsurfa.2007.04.052.

213. Xie, Y.; Ye, R.; Liu, H. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf. A Physicochem. Eng. Asp. 2006, 279, 175–178. https://doi.org/10.1016/j.colsurfa.2005.12.056.

214. Sathishkumar, M.; Sneha, K.; Won, S.W.; Cho, C.-W.; Kim, S.; Yun, Y.-S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces 2009, 73, 332–338. https://doi.org/10.1016/j.colsurfb.2009.06.005.

215. Durán, N.; Marcato, P.D.; De Souza, G.I.H.; Alves, O.L.; Esposito, E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 2007, 3, 203–208. https://doi.org/10.1166/jbn.2007.022.

216. Dastjerdi, R.; Mojtahedi, M.R.M.; Shoshtari, A.M.; Khosroshahi, A. Investigating the production and properties of Ag/TiO 2/PP antibacterial nanocomposite filament yarns. J. Text. Inst. 2010, 101, 204–213. https://doi.org/10.1080/00405000802346388.

217. Dastjerdi, R.; Mojtahedi, M.R.M.; Shoshtari, A.M. Comparing the effect of three processing methods for modification of filament yarns with inorganic nanocomposite filler and their bioactivity against staphylococcus aureus. Macromol. Res. 2009, 17, 378–387.

218. Lok, C.-N.; Ho, C.-M.; Chen, R.; He, Q.-Y.; Yu, W.-Y.; Sun, H.; Tam, P.K.-H.; Chiu, J.-F.; Che, C.-M. Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles. J. Proteome Res. 2006, 5, 916–924. https://doi.org/10.1021/pr0504079.

219. Jeong, S.H.; Hwang, Y.H.; Yi, S.C. Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids. J. Mater. Sci. 2005, 40, 5413–5418. https://doi.org/10.1007/s10853-005-4340-2.

220. Jeong, S.H.; Yeo, S.Y.; Yi, S.C. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J. Mater. Sci. 2005, 40, 5407–5411. https://doi.org/10.1007/s10853-005-4339-8.

221. Stobie, N.; Duffy, B.; McCormack, D.E.; Colreavy, J.; Hidalgo, M.; McHale, P.; Hinder, S.J. Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol–gel coating. Biomaterials 2008, 29, 963–969. https://doi.org/10.1016/j.biomaterials.2007.10.057.

222. Wen, H.-C.; Lin, Y.-N.; Jian, S.-R.; Tseng, S.-C.; Weng, M.-X.; Liu, Y.-P.; Lee, P.-T.; Chen, P.-Y.; Hsu, R.-Q.; Wu, W.-F.; et al. Observation of Growth of Human Fibroblasts on Silver Nanoparticles. J. Phys. Conf. Ser. 2007, 61, 445–449. https://doi.org/10.1088/1742-6596/61/1/089.

223. Jia, X.; Ma, X.; Wei, D.; Dong, J.; Qian, W. Direct formation of silver nanoparticles in cuttlebone-derived organic matrix for catalytic applications. Colloids Surf. A Physicochem. Eng. Asp. 2008, 330, 234–240.
https://doi.org/10.1016/j.colsurfa.2008.08.016.

224. Yeo, S.Y.; Jeong, S.H. Preparation and characterization of polypropylene/silver nanocomposite fibers. Polym. Int. 2003, 52, 1053–1057. https://doi.org/10.1002/pi.1215.

225. Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101.
https://doi.org/10.1016/j.nano.2006.12.001.

226. Ilić, V.; Šaponjić, Z.; Vodnik, V.; Molina, R.; Dimitrijević, S.; Jovančić, P.; Nedeljković, J.; Radetić, M. Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J. Mater. Sci. 2009, 44, 3983–3990. https://doi.org/10.1007/s10853-009-3547-z.

227. Potiyaraj, P.; Kumlangdudsana, P.; Dubas, S.T. Synthesis of silver chloride nanocrystal on silk fibers. Mater. Lett. 2007, 61, 2464–2466. https://doi.org/10.1016/j.matlet.2006.09.039.

228. Simončič, B.; Klemenčič, D. Preparation and performance of silver as an antimicrobial agent for textiles: A review. Text. Res. J. 2016, 86, 210–223. https://doi.org/10.1177/0040517515586157.

229. Mohamed, A.L.; El-Naggar, M.E.; Shaheen, T.I.; Hassabo, A.G. Laminating of chemically modified silan based nanosols for advanced functionalization of cotton textiles. Int. J. Biol. Macromol. 2017, 95, 429–437. https://doi.org/10.1016/j.ijbiomac.2016.10.082.

230. Tam, K.H.; Djurišić, A.B.; Chan, C.M.N.; Xi, Y.Y.; Tse, C.W.; Leung, Y.H.; Chan, W.K.; Leung, F.C.C.; Au, D.W.T. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 2008, 516, 6167–6174. https://doi.org/10.1016/j.tsf.2007.11.081.

231. Zhang, L.; Ding, Y.; Povey, M.; York, D. ZnO nanofluids—A potential antibacterial agent. Prog. Nat. Sci. 2008, 18, 939–944. https://doi.org/10.1016/j.pnsc.2008.01.026.

232. Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 2001, 3, 643–646. https://doi.org/10.1016/S1466-6049(01)00197-0.

233. Karunakaran, C.; Rajeswari, V.; Gomathisankar, P. Enhanced photocatalytic and antibacterial activities of sol–gel synthesized ZnO and Ag-ZnO. Mater. Sci. Semicond. Process. 2011, 14, 133–138. https://doi.org/10.1016/j.mssp.2011.01.017.

234. Ansari, M.A.; Khan, H.M.; Khan, A.A.; Sultan, A.; Azam, A. Characterization of clinical strains of MSSA, MRSA and MRSE isolated from skin and soft tissue infections and the antibacterial activity of ZnO nanoparticles. World J. Microbiol. Biotechnol. 2012, 28, 1605–1613. https://doi.org/10.1007/s11274-011-0966-1.

235. Wang, H.; Xie, C.; Zhang, W.; Cai, S.; Yang, Z.; Gui, Y. Comparison of dye degradation efficiency using ZnO powders with various size scales. J. Hazard. Mater. 2007, 141, 645–652. https://doi.org/10.1016/j.jhazmat.2006.07.021.

236. Farouk, A.; Moussa, S.; Ulbricht, M.; Schollmeyer, E.; Textor, T. ZnO-modified hybrid polymers as an antibacterial finish for textiles. Text. Res. J. 2014, 84, 40–51. https://doi.org/10.1177/0040517513485623.

237. Znaidi, L. Sol–gel-deposited ZnO thin films: A review. Mater. Sci. Eng. B 2010, 174, 18–30. https://doi.org/10.1016/j.mseb.2010.07.001.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share This